Galerie   Spiele   Spenden   Startseite    Forum    Wiki    Suchen    FAQ    Registrieren    Login
Die Suche hat 18 Beiträge gefunden.
Autor Nachricht
Beitrag Forum: Praktica-Forum   Geschrieben: Mo, 10. Sep 2012 14:46   Titel: Re: Pentacon Objektiv 4/300

Hallo Fotogravieh

ist schon etwas<länger her, Dein Beitrag.
Gilt Dein Angebot für Öffnen des Pentacon 4 / 300 noch.??
Bei mir sind die Blendenlamellen ausgehakt und ich könnte Unterstützung gebrauchen.

Grüße
Falk
Beitrag Forum: Fotowissen   Geschrieben: Sa, 27. Dec 2008 15:36   Titel: Objektive Und Den Richtigen Einsatz.

Kleine Objektivkunde

Man unterscheidet Objektive nach ihrem Aufnahmewinkel (bzw. ihrer Brennweite, was äquivalent ist).
Der Aufnahmewinkel hat aber nicht nur Einfluss auf den Bildausschnitt, er bestimmt auch maßgeblich Geometrie und Tiefenschärfe der Aufnahme.
Weitwinkel
Zu den Weitwinkelobjektiven gehört alles unterhalb von 35mm (28mm entsprechen 75°). Diese Objektive eignen sich besonders für Aufnahmen in Innenräumen und für Landschaften, aber Portraits werden damit unnatürlich verzerrt.
Ein besonderes Merkmal ist die vergrößerte Tiefenschärfe, das heißt, bei gleicher Blende wird ein größerer Bereich scharf abgebildet als bei größeren Brennweiten.
Unter den Weitwinkeln unterscheidet man außerdem die extremen Weitwinkel um 18mm Brennweite und die sogenannten Fisheye mit Brennweiten um 8mm können diese Objektive bis zu 180° Aufnahmewinkel erreichen (Vorsicht mit den eigenen Füßen).

Normalbereich
Das allgemeingültige Normalobjektiv gibt es nicht, für Kleinbildkameras ist es aber das 50mm Objektiv (das entspricht einem Aufnahmewinkel von etwa 45°), man sagt, dass es den Seheindruck am natürlichsten wiedergibt, sein Aufnahmewinkel entspricht etwa 45°.Kleinere Bildformate (insbesondere die kleinen Sensoren der Digitalkameras) verlangen Objektive mit kürzeren Brennweiten, um den selben Ausschnitt aufzunehmen.

Teleobjektive
Teleobjektive von 80mm bis 1000mm und darüber eigenen sich hervorragend, um weit entfernte Objekte heranzuholen (Aufnahmewinkel < 16°). Ein leichtes Tele (um 80-100mm) eignet sich auch gut für die Portraitfotografie, weil die Proportionen damit am besten wiedergegebne werden, längere Brennweiten lassen das Gesicht platt erscheinen.
Der Bereich der Schärfentiefe ist bei diesen Objektiven eingeschränkter als bei den Weitwinkeln, was man bei der Aufnahme beachten sollte 8und bei Portraits ebenfalls sinnvoll ist, da die Aufmerksamkeit auf den scharfen Bereich gelenkt wird). Hier muss dann eventuell stärker abgeblendet werden.
Außerdem verwackeln Aufnahmen mit Teleobjektiven leichter (Als Fausregel gilt: Belichtungszeit = 1/Brennweite, also bei 200mm etwa 1/250s), so dass kürzere Verschlusszeiten oder ein Stativ hilfreich sein kann. Nicht zuletzt helfen höherempfindliche Filme die letzten beiden Punkte auszugleichen.

Makro
Das Makroobjektiv ist eine Sonderform des Normal- oder Teleobjektivs. Der Trick dabei ist, dass diese Objektive so konstruiert sind, dass man wesentlich dichter an das zu fotografierende Objekt herankommt, so dass Abbildungsverhältnisse von 1:4 (4cm in der Wirklichkeit werden auf 1cm Film abgebildet) oder besser möglich werden.

Shiftobjektive
Fast exotisch ist die Aufnahme mit Shiftobjektiven. Diese Spezialisten werden vor allem bei Architekturfotografie eingesetzt. Dadurch, dass das Objektiv parallel zum Film Verschoben wird erreicht man, dass stürzende Linien (der Effekt, dass sich bei Gebäuden die von unteren her aufgenommen werden, die Proportionen stark verjüngen, bzw. das Gebäude nach hinten zu kippen scheint) unterdrückt werden.
Beitrag Forum: Menschen allgemein   Geschrieben: Do, 16. Oct 2008 21:24   Titel: Street-Fotografie, was ist das?

Street-Fotografie, was ist das?


Die Streetfotografie ist eine dokumentarische Fotografie, die sich überschneidet mit Teilen der Portrait- und Event-Fotografie.

Zu Eigen ist der Streetfotografie, dass sie ungekünstelt ist, beobachtend das Geschehen um sie herum zum Thema macht und exemplarische Szenen herausgreift.
Dabei wiegt der "Inhalt", also die Bildaussage weit mehr als technische Gegebenheiten, wie beispielsweise Bildschärfe, korrekte Belichtung mit Zeichnung in allen Bildbereichen, etc.

Street ist meist direkt und nah, sollte immer authentisch und ungestellt sein. Sie konzentriert sich auf einen bestimmten Aspekt oder Moment, der dann festgehalten wird.
Ein Aspekt, der die Streetfotografie problematisch macht, ist zum Teil die Diskussion um das "Recht am eigenen Bild", sowie die scheinbar grenzenlose Ausweitung des Themas auf alle Bereiche des Lebens. Streetfotografie ist in erster Linie Dokumentation des Gesehenen. Es sind "Schnappschüsse", Momentaufnahmen, usw.

Tips
Sinnvoll ist es vor Ort die Belichtung zu prüfen. Also die Kamera so Voreinzustellen, dass unter sämtlichen Bedingungen die Aufnahme gelingt. Also wählt man eine ISO-Einstellung, die selbst in Schattenbereichen eine ausreichend schnelle Belichtungszeit, je nach Brennweite, ermöglicht.

Unterbelichten, um das Bild nicht durch zu helle Bereiche (gerade bei Sonne wichtig) schon beim Fotografieren zu "zerstören".

Bsp. - 2/3 Blende unterbelichtet, das verringert auch die Verschlusszeit
Bsp. Blende 4 ist sehr gut geeignet

Über Brennweiten lässt sich keine Regel beschreiben.
Authentische Fotos gibt es mit einer Brennweite von 50mm.
Aber auch 70-200mm oder 100-400mm ist kein Problem.
Die verwendete Brennweite richtet sich fast danach, wie "skrupellos" ein Streetfotograf ist.
Bei 50mm muss man an das Motiv schon sehr nahe heran. Die Ergebnisse sind dafür sehr authentisch, weil das Bild dem Sehen des Menschen nahe kommt.
Größere Brennweiten erlauben dafür eine Abgeschiedenheit des Fotografen. Er wird vom Motiv kaum bemerkt. Das Bild bleibt ungekünstelt.

Umgang mit Personen als Hauptmotiv
Dies ist ein nicht ganz einfaches Thema, denn generell gilt "Das Recht am eigenen Bild". Personen, die nicht in der Öffentlichkeit stehen (Prominente), haben das Recht am eigenen Bild, wenn sie eindeutig zu identifizieren sind.
Streetfotografie muß nicht Personen beinhalten. Es kann auch nur die Dokumentation eines Strassenzugs sein, Tiere, Fahrzeuge, etc.

Fazit
Streetfotografie ist eine spannende, anspruchsvolle Sparte der Fotografie. Selbst am gleichen Ort gibt es immer wieder lohnende neue Motive. Sie fördert die Kommunikation und schult das Sehen.
Beitrag Forum: Fotowiki   Geschrieben: Fr, 19. Sep 2008 19:50   Titel: Kodak Kodachrome

Kodak Kodachrome



Kodak Kodachrome ist

  1. ein von 1916–1930 produzierter Zweifarbenfilm,
  2. ein von 1935 bis heute produzierter Umkehr- bzw. Diafilm,
  3. ein eingetragener Markenname der Firma Kodak,
  4. ein Musikstück von Paul Simon.



Der Kodachromefilm war der erste kommerziell erfolgreiche Dreifarbenfilm mit natürlicher Farbwiedergabe. Seit seinem Erscheinen im Jahr 1935 bis in die 1990er Jahre war er das bevorzugte Diafilmmaterial vieler Berufsfotografen und anspruchsvoller Fotoamateure. Kodachrome weist eine hohe Schärfe, Feinkörnigkeit sowie lebendige Farben auf, und ist in Archiven äußerst gut haltbar. Diese Eigenschaften wurden von anderen Filmen über ein halbes Jahrhundert lang nicht erreicht, weshalb der Kodachrome einen bedeutenden Einfluss auf die Entwicklung der Farbfotografie ausübte.

Ein bezüglich der Farbwiedergabe qualitativ vergleichbarer Vorgänger, das 1907 von den Gebrüdern Lumiere auf den Markt gebrachte Autochrom, war für einen vergleichbaren kommerziellen Massenerfolg noch zu teuer und technisch zu umständlich gewesen.


Geschichte und Entwicklung


Vorgänger Zweifarbenfilm

Der technisch wie qualitativ nicht vergleichbare Vorgänger, der Kodachrome-Zweifarbenfilm, wurde zwischen 1916 und 1930 produziert und als Kinofilm genutzt. Die Aufnahmen wurden mit einer Spezialkamera mit Zwillingsobjektiv aufgenommen und dann auf Dipo-Film kopiert.

Das klassische Kodachrome

Das dem klassischen Kodachrome-Dreifarbenfilm zugrundeliegende Verfahren wurde von 1920 bis 1935 von den zwei Musikern und begeisterten Hobbyphotographen Leopold Godowsky und Leopold Mannes im Auftrag Kodaks entwickelt; diese erste Kodachrome-Emulsion wies eine Filmempfindlichkeit von 10 ASA auf. Es heißt, Godowsky und Mannes hätten bei ihren zu Kodachrome führenden Versuchsreihen in der eigenen Küche mangels korrekt genug laufender Uhren die exakte Entwicklungszeit stets durch das gemeinsame Pfeifen einer Beethovensymphonie bestimmt. Man spricht aufgrund der Namen der beiden Erfinder im Englischen auch scherzhaft davon, Kodachrome sei gemeinsam von God and Man („Gott und dem Menschen“) erschaffen worden.

Der Kodachrome-Umkehrfilm wurde erstmals im April 1935 als 16-mm-Schmalfilm vorgestellt; es handelte sich dabei um den ersten nach einem chromogenen Verfahren arbeitenden Farbfilm überhaupt sowie den „dienstältesten“ derzeit noch am Markt erhältlichen fotografischen Film.

Eigenschaften


Der Schichtträger der Kodachrome-Farbumkehrfilme besteht aus 0,135 mm dickem Celluloseacetat.

Die aufeinander abgestimmte Filmreihe bestand überwiegend aus dem K25, K64 und dem K200 mit den Filmempfindlichkeiten von 25, 64 und 200 ASA), für Super8 und 16 mm besaß darüber hinaus der K40 bis zu seinem Produktionsende 2005 eine besondere Bedeutung; Jahrzehnte zuvor war in beiden letzteren Formaten bereits die Fertigung des K25 eingestellt worden. Mittlerweile sind nur noch der K64 und K200 und das auch nur für 35 mm erhältlich, die Produktion des K25 wurde von Kodak 2002 auch für 35 mm eingestellt.

Der Kodachrome 25 besitzt eine Körnigkeit von 8 RMS, gemessen mit einem Mikro-Densitometer bei einer Messblendenöffnung von 48 µ und 12facher Vergrößerung. Das Auflösungsvermögen liegt bei einem Testobjektkontrast von 1.6:1 bei 63 Linien/mm sowie bei einem Testobjektkontrast von 1000:1 bei 100 Linien/mm (Herstellerangaben von 1998).

Der Kodachrome 64 besitzt eine Körnigkeit von 10 RMS, gemessen mit einem Mikro-Densitometer bei einer Messblendenöffnung von 48 µ und 12facher Vergrößerung. Das Auflösungsvermögen liegt bei einem Testobjektkontrast von 1.6:1 bei 63 Linien/mm bzw. bei einem Testobjektkontrast 1000:1 bei 100 Linien/mm (Herstellerangaben von 2002).

Der Kodachrome 200 besitzt eine Körnigkeit von 16 RMS, gemessen mit einem Mikro-Densitometer bei einer Messblendenöffnung von 48 µ und 12facher Vergrößerung. Das Auflösungsvermögen liegt bei einem Testobjektkontrast von 1.6:1 bei 50 Linien/mm sowie bei einem Testobjektkontrast von 1000:1 bei 100 Linien/mm (Herstellerangaben von 2002).

Funktionsweise


Der Kodachrome ist eigentlich ein dreischichtiger Schwarz-Weiß-Film. Die Schichten sind durch Farbfilter voneinander getrennt und zeichnen so die Intensität der drei additiven Grundfarben auf. Anders als bei „normalen“ Farbfilmen, die in der Regel nach dem E-6-Prozess verarbeitet werden, fehlen dem Kodachrome aber die Farbkuppler zur Farbwiedergabe; diese sind erst im Entwickler enthalten. Daher ist der Kodachrome unempfindlicher gegenüber falscher Lagerung (zu lange, zu heiß, zu feucht) als andere Farbfilme. Es soll schon originalverpackte Kodachrome-Filme gegeben haben, die (ohne tiefgekühlte Lagerung) mehr als 15 Jahre über das angegebene Haltbarkeitsdatum hinaus aufbewahrt wurden und dann nach Belichtung und Entwicklung trotzdem noch mittelmäßige Ergebnisse zeigten. Weil die Farbe erst während der Entwicklung entsteht, zählt der Kodachrome zu den chromogenen Filmen.

Das Fehlen der in die Emulsion eingebetteten Farbkuppler, die bei den E-6 Filmen diffusionsecht mit langen Molekülketten ausgeführt sein müssen, erklärt die höhere Schärfeleistung gegenüber diesen. Der Film ist daher für Großvergrößerungen optimal geeignet.

Die Entwicklung im K14-Prozess ist daher auch sehr aufwändig und muss in mehreren Schritten erfolgen. Sie wird nur von Kodak selbst durchgeführt und ist bereits im Filmpreis enthalten (nur Europa).

Kodachrome-Filme hatten immer nur Bedeutung als Film im professionellen bzw. semiprofessionellen Bereich. Diafilme auf der Basis des wesentlich einfacher zu handhabenden E-6-Entwicklungsprinzips sind marktbeherrschend.

Vor- und Nachteile


Die Kodachrome-Filme zeichnen sich allgemein aus durch ihre sehr hohe Schärfe, ihre äußerst natürliche und nuancenreiche Farbwiedergabe – vor allem von Hauttönen – und die hohe Farbbeständigkeit. Letztere Eigenschaft machte ihn lange Zeit zum bevorzugten Film für Anwendungen in Archiven (Museen, Kunstarchive).

Kodachrome ist das einzige Diamaterial, das in den dunklen Partien rotstichig wird, während andere Diafilme blaustichig werden. Dies verleiht Kodachrome-Dias einen wärmeren Bildeindruck. Die stärkere Betonung von Grüntönen führt zudem zu einem subjektiv verbesserten Bildeindruck von Landschaften, da Menschen Grün stark wahrnehmen.

Tests haben gezeigt, dass die hohe Haltbarkeit der Kodachrome-Farbstoffe nur für den Fall der Aufbewahrung im Dunkeln gilt, hier ist Kodachrome allen anderen Diafilmen für die bildmäßige Fotografie, die sämtlich nach dem E-6-Verfahren arbeiten, überlegen. Anders verhält es sich mit der Stabilität der Farbstoffe bei der Projektion: Der enorme Lichtdurchsatz während der Projektion führte bei Tests schon nach einer Stunde zu einem merklichen Ausbleichen (Dichteverlust von 0,1) von Kodachrome-Dias, E-6-Diamaterialien (z. B. Kodak Ektachrome, Agfachrome, Fujichrome) zeigten sich hier stabiler. Kodachrome-Dias sollten deshalb unbedingt in vollkommener Dunkelheit aufbewahrt werden!

Zukunft


2004 gab Kodak die Einstellung der Produktion analoger Kameras, sowie die Einstellung der Weiterentwicklung analogen Filmmaterials bekannt (wobei 2007 allerdings wieder neue Emulsionen vorgestellt wurden). Das Angebot an analogen Filmen wurde reduziert. Seit November 2006 gibt es nur noch ein Entwicklungslabor für Kodachrome weltweit, in den USA. Abzusehen ist, dass langfristig durch die Verbreitung der Digitalfotografie analoge Filme nur noch im Spezialhandel verfügbar sein werden und die Angebotsbreite sinken wird.

Digitalisierung (Scannen)


Ein gerahmtes Kodachrome-Dia lässt sich wie jedes andere Dia in einen Dia-Scanner einlegen. Das Ergebnis nach einem herkömmlichen Scan-Vorgang aber wird in fast allen Fällen nicht zu gebrauchen sein; meist wird es sehr blaustichig ausfallen. Einige Hersteller bieten in ihrer Scan-Software spezielle Kodachrome-Farbprofile zur Auswahl, die dies verhindern sollen. Für wirklich farbechte Scans ist allerdings eine IT8-Kalibrierung notwendig.

Da Kodachrome-Dias besonders feinkörnig sind, warten sie mit einem sehr hohen Auflösungsvermögen und einem sehr großen Dichteumfang auf. Möchte man bei der Digitalisierung hier keine Verluste in Kauf nehmen, ist also ein hochauflösender Scanner (min. 3000 dpi) mit großem Dichteumfang nötig.

Nahezu jedes Dia weist gewisse unerwünschte Defekte wie Staub, Kratzer, Fingerabdrücke und ähnliche auf, die heutzutage normalerweise schon beim Scannen erkannt und entfernt werden. Beim Scannen von Kodachrome-Dias gestaltet sich dieses jedoch schwierig. Viele Scanner besitzen einen zusätzlichen Infrarotkanal, dessen langwelliges Licht zwar durch das Dia jedoch nicht durch Staubpartikel dringt; so kann Staub sehr zuverlässig identifiziert und entfernt werden. In den Kodachrome-Dias (und auch in vielen Schwarzweiß-Dias) sind Silberhalogenide enthalten, die wie Staub das infrarote Licht reflektieren. Dies führt dann zu sehr verwaschenen Scans. Erst 2004 hat Nikon mit dem Super Coolscan 9000 ED den bisher einzigen Scanner auf den Markt gebracht, der mit Hilfe verbesserter Technologie (ICE Professional) zuverlässig staub- und kratzerfreie Scans von Kodachrome-Dias anfertigen kann. LaserSoft Imaging setzt seit Mitte 2008 in ihrer Software Silverfast eine weiterentwickelte Version der Staub- und Kratzerentfernung (iSRD) ein, die mit allen Nikon Filmscannern lauffähig ist und qualitativ hochwertige Ergebnisse erzielt.

Kodachrome-Song


1973 komponierte Paul Simon das Lied Kodachrome, das von seiner Jugend erzählt und bei dem Kodachrome-Filme eine wichtige Rolle spielen. Er widmete es dem Hersteller Kodak. Er sang das Lied auch 1981 bei der Wiedervereinigung von Simon &amp; Garfunkel im New Yorker Central Park.

Siehe auch


  • Konfektionierung
  • Aufnahmeformat
  • Zelluloidfilm und Sicherheitsfilm
Beitrag Forum: Fotowiki   Geschrieben: Do, 03. Apr 2008 19:36   Titel: Normalobjektiv

Normalobjektiv


Wechseln zu: Suche


Als Normalobjektive gelten in der Fotografie Objektive mit einer Brennweite, die etwa der Diagonalen des Aufnahme-Bildformats entspricht (Normalbrennweite). Damit ergibt sich unabhängig vom Aufnahmeformat ein diagonaler Bildwinkel von etwa 53 Grad.

Objektive mit einer kürzeren Brennweite (und größerem Bildwinkel) als Normalobjektive werden als Weitwinkelobjektiv bezeichnet, Objektive mit längerer Brennweite (und kleinerem Bildwinkel) als Fern- oder Teleobjektive.


Eigenschaften


Vor der massenhaften Verbreitung der Zoomobjektive wurden Spiegelreflexkameras meist zusammen mit einem Normalobjektiv verkauft. Aufgrund der hohen Stückzahlen und der unkomplizierten, optisch oft nahezu symmetrischen Konstruktion sind Normalobjektive die preiswertesten lichtstarken Objektive mit meist ausgezeichneten Abbildungseigenschaften.

Gängige Normalobjektive haben fast immer Anfangsöffnungen von 1:1,8 bis zu 1:1,4. Andere Brennweiten, die so lichtstark sind, sind deutlich aufwändiger zu bauen (größere Linsen erforderlich) und deutlich teurer. Es gibt Normalobjektive auch mit Anfangsöffnungen von 1:1,2 oder sogar 1:0,95. In der Available-Light-Fotografie (bei schwierigen Lichtverhältnissen) werden sie daher häufig eingesetzt.

Bei der heute üblichen Einteilung von Festbrennweiten sind Normalobjektive die Objektive mit der kürzesten Brennweite, die bei "einäugigen" Spiegelreflexkameras keine Retrofokus-Konstruktion erfordern. Kürzere Brennweiten erfordern bei diesen Kameras zusätzliche Linsen um hinter dem Objektiv genug Platz für den Schwingspiegel zu schaffen, was den Aufwand für Konstruktion und Herstellung vergrößert.


Aufnahmeformate


Bei Kleinbildkameras hat sich eine Brennweite von 50 mm in der Praxis durchgesetzt, obwohl die Diagonale des Aufnahmeformats (24 mm x 36 mm) 43,3 mm beträgt. Einzelne Hersteller bezeichneten auch Objektive mit 55 mm bis 60 mm Brennweite noch als Normalobjektiv. Kompakte Kleinbildkameras mit fest montiertem Objektiv weisen dagegen häufig leichte Weitwinkel mit Brennweiten zwischen etwa 35 mm und 45 mm auf.

Bei Mittelformatkameras mit einem Aufnahmeformat von 6 cm x 6 cm ergibt sich entsprechend etwa 85 mm als Normalbrennweite. Das früher häufig verwendete Rollfilmformat 6x9 cm mit 105 mm Normalbrennweite gilt heute als Großformat.

Bei Großformatkameras, die es von 6 cm x 9 cm bis 18 cm x 24 cm Bildformat, aber auch mit nichtmetrischen Abmessungen, z.B. 8x10" (inch), gibt, wird der Zusammenhang deutlich: ein Normalobjektiv für das Bildformat 6 cm x 9 cm (Bilddiagonale = 10,8 cm) mit einer Brennweite von 105 mm wäre für das nächstgrößere Format 9 cm x 12 cm (Bilddiagonale = 15,0 cm) schon eher ein leichtes Weitwinkelobjektiv.

Bei Digitalkameras gilt, unabhängig von der Pixelzahl, entsprechend die Diagonale der lichtempfindlichen Sensorfläche (siehe Formatfaktor).


Siehe auch


  • Normalbrennweite
  • Universalobjektiv
  • Retroobjektiv


Verwandte Themen
  • Verzeichnung
  • Schärfe
  • Auflösung
Beitrag Forum: Landschaftsfotografie   Geschrieben: Fr, 22. Feb 2008 19:41   Titel: Weitwikel Und Landschaftsfotografie

Landschaftsphotographie mit Weitwinkelobjektiven



Weitwinkelobjektive gelten als erste Wahl bei der Landschaftsfotografie, weil man damit viel Objekt auf den Film bekommt. Jedoch sorgt das nacher beim Betrachten der Bilder oft für große Enttäuschung. Zu viele Formen, Farben und Lienien und die hohe Tiefenschärfe sorgen oft für ein unausgewogenes Bild ohne erkennbares Hauptmotiv. Gestalterisches Ordnen der Einzelmotive ist daher vor der Aufnahme sinnvoll.

Problematisch ist der subjektive Eindruck der imposanten Landschaft, die man mit eigenen Augen betrachtet. Viele versuchen dann die gleichen Eindrücke (tolle Farben, Formen, Himmel, Berge und vielleicht noch die süßen Tierchen irgendwo da draussen) ihrer Wahrnehmung in den Kamerasucher zu stopfen. Die entwickelten Bilder oder die betrachteten daten am Monitor sind dann eher enttäuschend. Eine so imposante szenerie sollte doch eigentlich zwangsläufig zu einem guten Bild werden, leider ist meist das genaue Gegenteil der Fall!

Tücken des Weitwinkels

Es bedarf überlegter Bildgestaltung, um Empfindungen der "eingefangenen" Szenerie im zweidimensionalen Bild nachzustellen. Dabei hat gerade das Weitwinkelobjektiv seine Tücken, da zu viele irrelevante Objekte mit abgebildet werden, die den Betrachter verwirren oder von der Kernaussage des Bildes ablenken. Mit Teleobjektiven kann man sehr einfach Störendes durch Wahl eines geeigneten Ausschnittes wegblenden oder durch gezielten Einsatz von Tiefenschärfe in Unschärfe verschwimmen lassen.

Aufgeräumte Bilder

Es ist daher unerlässlich, im Bild aufzuräumen. Ein Betrachter sollte spätestens beim zweiten Hinsehen erkennen, was der Fotograf abbilden wollte. Es ist erforderlich, das im Sucher erfasste Motiv zu analysieren, gedanklich auf die graphischen Grundelemente, die Linien, Formen und Flächen zu reduzieren. Außerdem gilt es zu bedenken, wie man den Betrachter über die Anordnung der Bildelemente ins Bild hineinführt und über das Gefüge der Linien und Formen Spannung aufbaut. Da sich die Motive selbst meist nicht ohne weiteres in eine gestalterisch ideale Anordnung versetzen lassen, müssen wir uns selbst bewegen und den optimalen Standpunkt buchstäblich erlaufen. Standpunkt und Perspektive gilt es, so lange zu wechseln, bis die optimale Linienführung im Sucher erscheint. Zuweilen genügt es, einen Schritt nach links oder rechts zu gehen oder sich einfach in die Hocke zu begeben. Manchmal aber, in bergigem Gelände etwa, sind solche Positionswechsel schwieriger und es kann auch vorkommen, dass man das im Kopf bereits fertige Bild nicht in eine befriedigende reale Aufnahme übersetzen kann und ist gezwungen, aufzugeben - wenn man sich das ehrlich eingesteht, kann man zumindest Film beziehungsweise Platz auf der Speicherkarte sparen.

Bilder gliedern

Viele gelungene Weitwinkelbilder erzielen ihre Wirkung aufgrund einer klaren Staffelung in Vorder-, Mittel- und Hintergrund. Der Vordergrund wird dabei oft vom Hauptmotiv besetzt, während Mittel- und Hintergrund dem Betrachter wichtige Informationen über die Umgebung des Motivs vermitteln. Solche Aufnahmen können, dank ihres hohen Informationsgehaltes, komplette Geschichten erzählen. Ein ausgezeichnetes Hilfsmittel beim überlegten Bildaufbau ist eine Gittermattscheibe im Sucher der Kamera. Einige digitale Kompaktkameras erlauben es, eine Gitterstruktur im Display anzuzeigen, was den gleichen Zweck erfüllt.
Beitrag Forum: Fotowiki   Geschrieben: Fr, 11. Jan 2008 23:38   Titel: Nikon F

Nikon F


Wechseln zu: Suche

Die Nikon F (in Deutschland auch: Nikkor F) ist ein klassischer Fotoapparat der 1960er Jahre, eine Kleinbild-Spiegelreflexkamera, die als Prototyp aller danach folgenden professionellen Kameras dieses Typs gilt.

Image
Nikon F (schwarz) in der Grundausstattung mit einfachem Prismensucher, Baujahr 1969

Die Nikon F wurde 1959 vorgestellt und 1971 von der technisch sehr ähnlichen Nikon F2 abgelöst, die den weltweiten Durchbruch des japanischen Herstellers Nikon im professionellen Kleinbildsektor auch in Europa markierte. Schon vorher war die F ein „Geheimtipp“, aber keineswegs ein „Exot“, sondern besonders in Japan und den USA als Profi-Kamera für den „harten Einsatz“ akzeptiert. Später folgten weitere Kameras in der F-Serie.

Zwar hatte die Nikon F nur mit einer wirklichen Weltneuheit aufzuwarten (dem 100%igen Sucherausschnitt), aber sie vereinte dennoch alle bis dahin bekannten Fortschritte erstmals in einem Modell.

Auch nach Jahrzehnten lässt sie sich problemlos einsetzen. Die Grundausstattung mit einfachem Prismensucher ohne Belichtungsmesser wirkt für heutige Verhältnisse spartanisch, aber sie funktioniert und alle heutigen Objektive mit dem F-Bajonett können weiter verwendet werden (Ausnahme: AF-G Objektive ohne Blendenring, DX-Objektive für Digitalkameras mit kleinerem Bildkreis und APS-Objektive). Eine Belichtungsmessung mit „Photomic-Suchern“ ist nur bei solchen Objektiven möglich, die über den Metallzinken auf dem Blendering verfügen oder damit nachgerüstet werden können.


Vorgeschichte


Die Nikon F baut auf folgenden Innovationen anderer Hersteller auf:

* 1925 erste Kleinbildkamera von Oskar Barnack - die Leica
* 1936 erste Kleinbild-Spiegelreflexkamera
* 1936 Kine-Exakta erste Kleinbild-Spiegelreflexkamera mit Bajonett-Anschluss für Wechselobjektive
* 1955 Pentax Asahiflex erste Kleinbild-Spiegelreflexkamera mit Springblende
* 1964 Pentax Spotmatic, erste einäugige Spiegelreflexkamera der Welt mit Belichtungsmessung durch das Objektiv.

Im Stammbaum des eigenen Hauses baut sie technisch auf der Messsucherkamera Nikon SP auf, die heute ein sehr begehrtes Sammlerobjekt ist. Der Ruf der SP als Alternative zu Leica und Contax liegt in den von Nikon gefertigten Objektiven begründet, die für beide Kameratypen hergestellt wurden. Die S-Serie verwendete selber das Contax-Bajonett. Man kann die Nikon F in vielfacher Hinsicht als eine SP mit Spiegelkasten und größerem Bajonett (durch das notwendig größere Auflagemaß) bezeichnen.

Motor und Langfilmkassette


Zur Nikon F gab es einen Motorantrieb, den F-36, der nicht zuletzt dafür verantwortlich war, dass sie sich als Profikamera sehr schnell etablieren konnte. Er wurde zum Vorbild für die Mitbewerber auf dem Kameramarkt. Mit dem F-36 sieht die Nikon F nur unwesentlich anders aus als heutige Profikameras. Er hatte bereits ein angebautes Batteriefach (zunächst externe Stromversorgung), einen Handgriff mit Auslöser und einen Umschalter von S (Single, Einzelbild) auf C (Continuous, Serie). Der F-36 schafft eine Bildfrequenz von 2; 2,5; 3 oder 4 Bildern in der Sekunde.

Des Weiteren stand ein Batterieteil mit Kabel zur Verfügung. Er enthielt 8 Batterien à 1,5 V und einen umstellbaren Auslöser für Einzel- und Serienschaltung. Auch er konnte mit Relaisbox, Intervalometer zur Fernsteuerung genutzt werden. Der Kabelbatterieteil wurde ausgeliefert mit Umhängeriemen und mit Kabel zu den Motoren. Mit Hilfe der Relaisbox, zwischen Kamera und Batterieteil geschaltet, konnte die Kamera auf große Distanzen oder am Relaisteil selbst ausgelöst werden.

Neben dem F-36 gab es auch den Motor F-250, mit zwei großen Nikon-Kassetten mit einem Fassungsvermögen bis zu 10 m Film (entspricht 250 Aufnahmen). Die technischen Merkmale der beiden Motoren waren genau gleich. Um die 10-Meter-Kassetten zu laden, bot Nikon ein Ladegerät an. Die zu ladende Filmlänge konnte vorgewählt werden. Diese F-250-Version wurde u. a. von der NASA mit in den Weltraum genommen (wie auch die entsprechende Nachfolgemodelle der F).

Die Rückwand


Eine Eigenheit der Nikon F ist ihre Rückwand. Wird jene bei späteren Kamera-Modellen aufgeklappt, so wird sie hier nach unten abgezogen. Dafür befindet sich in der Bodenplatte ein versenkbarer Entriegelungshebel. Die Rückwand wird also zusammen mit der Bodenplatte abgebaut.

Der Fotograf hält beim Filmwechsel plötzlich zwei Teile in der Hand und ist „in Action“ vor eine zusätzliche Herausforderung gestellt: „Mit welcher Hand den Film einlegen?“.

Der Motor hat eine eigene Kamerarückwand, da er die Bodenplatte ersetzt, die bei der normalen Rückwand Bestandteil ist, so dass er also auch komplett abgebaut werden muss, wenn man einen Film wechseln will. Besonders hierbei kann es zu Beschädigungen der Führungsschlitze am Kameragehäuse kommen. Ein Verkanten muss unbedingt vermieden werden. Das Nachfolgemodell F2 hatte dann die heute gebräuchliche - und komfortablere - aufklappbare Rückwand.

Unten an der Bodenplatte lässt sich die Filmempfindlichkeit einstellen. Dies hat aber nur den einzigen Sinn, dass der Fotograf sich erinnern kann, welche Filmempfindlichkeit er beim Belichtungsmesser (extern oder Photomic) einstellen muss. Es ist also eine reine Gedächtnisstütze ohne technische Funktion.

Wechselsucher

Charakteristisch und wegweisend für die F Serie ist das System von Wechselsuchern. Zum Wechseln der Sucher gibt es einen etwas schwer zu bedienenden kleinen Entriegelungsknopf an der Rückseite des Kameragehäuses. Erst 1980 mit der Nikon F3 wurde das deutlich besser gelöst.

Die Grundversion hatte einen Prismensucher, der ein aufrechtes und seitenrichtiges Bild zeigt. Ein weiterer Sucher war der Lichtschacht, nützlich bei Makro- und Mikrofotographie. Der Lichtschacht ist mit einer wegklappbaren Lupe (5x) versehen.

Der Prismensucher mit eingebautem Belichtungsmesser („Photomic“)

Der erste Photomic-Sucher hatte zum Messen im Sucher ein Fensterchen, das in einem eher unbestimmten Winkel das Licht maß. Dann erschien der erste TTL-Photomic (Through the Lens), der mit wechselnden Brennweiten die Messung anpasste. Der Photomic Tn misst das Mattscheibenzentrum von 12mm zu 60% und die Randbereiche zu 40%. Diese Messteilung wurde ermöglicht durch den Bau eines asphärischen Kondensor-Linsen-Systems, geregelt durch eine feststehende Blende vor den beiden CdS-Zellen (den eigentlichen Lichtmesszellen), die links und rechts des Okulars liegen. Der Messvorgang erfolgte bei offener Blende, zu jener Zeit eine Seltenheit. Der Photomic Tn war kalibiert von ASA (dem heutigen ISO) 20-6400. Der Messbereich ging von Lichtwert 2-17 bei ASA 100 mit dem Nikon Auto 55mm f/1,2.

Bei dem im August ausgelieferten Photomic FTn, der sich leichter montieren ließ, da er mit einer Klemmfassung ausgerüstet war, musste die größte Blende des montierten Objektivs nicht mehr an die Filmempfindlichkeit angepasst werden. Für Aufnahmen mit tiefem Kamerastandpunkt ist die Nadel des Belichtungsmessers auch auf dem Gehäuse des Photomic sichtbar.

Die Nikon Photomic FTN war das letzte Modell der Nikon F. Die damaligen Photomics funktionieren allerdings nicht mit den heutigen AF-Objektiven. Der Fotograf greift also besser gleich zum Handbelichtungsmesser und dem einfachen Prismensucher und hält so auch die bis heute leichteste Urversion der kompletten F-Serie in der Hand.

Image
Matte Seite der selben Scheibe

Image
Standard-Einstellscheibe Typ A mit Schnittbildindikator

Die Wechselsucher der Nikon F2 passen ebenso an die F, wie auch deren Einstellscheiben. Beim Ansetzen der F2-Sucher muss bei der F nur das vordere Typenschild abgeschraubt werden, was aber unkompliziert ist, weil die Schrauben sichtbar an der Außenseite sind (siehe auch Foto der Kamera oben). Die Photomics der F2 funktionieren an der F allerdings nicht, da sie eine Stromversorgung seitens der Kamera erwarten. Ein Batteriefach sucht man am eigentlichen Kameragehäuse der F vergebens.

Erst mit der F3 wanderte der Belichtungsmesser in das Gehäuse der Kamera selber. Bei der F4 wurden bereits wieder (neue) Funktionen in den Sucher ausgelagert: Die Mehrfeldmessung.

Ab der F2 gab es neben Prisma-, Lichtschacht- und Photomicsucher auch Lupen- und Sportsucher für spezielle Anwenderkreise.

Der Lupensucher ist von seinem Anwendungsbereich her ein „besserer Lichtschachtsucher“ für Makro- und Mikrofotografie. Er besteht aus einer aufwändig konstruierten 6-fach vergrößernden Lupe und ist damit besser als die einklappbare Lupe des einfachen Lichtschachtsuchers.

Der Sport-Prismensucher ermöglicht dem Fotografen (sogar den Brillenträgern) den Überblick über das gesamte Sucherbild, wenn er einen Helm oder eine Schutzbrille tragen muss (z.B. beim Fallschirmspringen oder auf dem Motorrad). Bei speziellen Unterwassergehäusen ist der Sportsucher unverzichtbar. Sportsucher meint also nicht den „normalen“ Sportfotografen, sondern den sporttreibenden Fotografen.


Einstellscheiben


Die Nikon F ermöglicht den Wechsel zu verschiedenen Einstellscheiben [1], die sehr schnell ausgewechselt werden können. Die mitgelieferte Einstellscheibe hatte ein Schnittbildzentrum mit Messkreis und Fresnellinse. Sie ist universell bis zu einer Brennweite von 135 mm verwendbar. 14 verschiedene Modelle bieten die Möglichkeit, bei jedem Gebrauch (Makro- Architektur- Luftbildfotographie) die optimale Scharfeinstellung zu treffen.


Mechanik


Da die Nikon F eine rein mechanische Kamera ist, wird der Verschluss nach heutigen Maßstäben „ungenau“ gesteuert (kein Schwingquarz „zählt“ bei ihr die Dauer einer 1/1000 Sekunde).

Als Verschluss dient bei der Nikon F ein äußerst langlebiges Titan-Rollo, das auch nach Jahrzehnten seinen Dienst tut. Die kürzeste Verschlusszeit ist 1/1000 Sekunde, die Blitzsynchronzeit beträgt 1/60 s.

Auslöser

Der Auslöseknopf liegt - damals konstruktionsbedingt - ungewöhnlich weit hinten ungefähr auf Höhe der Filmebene. Für den Drahtauslöseranschluss wird noch die heute nicht mehr übliche Leica-Glocke verwendet. Es gibt aber Adapter für „normale“ Drahtauslöser. Der Auslöseknopf hat einen Fingerschutzring, der auch zum Einstellen des Filmtransports (A-Stellung) oder der Filmrückwicklung (R-Stellung) dient.

Ein roter Punkt dreht sich bei jeder Aufnahme genau um 360°, so können Doppelbelichtungen erreicht werden.

Neben der normalen B-Einstellung (Bulb) für Langzeitbelichtungen, gibt es auch die für professionelle Kameras typische T-Einstellung, die den Verschluss erst wieder schließt, wenn das Verschlusszeitenrad in eine andere Stellung gedreht wird. Diese Einstellung erspart den Drahtauslöser mit seiner Feststellschraube für die übliche B-Einstellung.

Spiegelvorauslösung / Spiegelarretierung

Die Nikon F verfügt über eine Spiegelvorauslösung, ein weiteres Merkmal für die Profiklasse. Für heutige Maßstäbe unprofessionell ist allerdings seine Funktion: Wenn man die Spiegelvorauslösung einstellt (hierzu gibt es einen Drehknopf seitlich des Bajonetts), klappt der Spiegel erst nach der nächsten Aufnahme hoch und verbleibt in dieser Stellung. Der Fotograf „verschenkt“ also eine Aufnahme.

Die Spiegelarretierung war notwendig, um den Gebrauch der drei „Fisheye-Objektive“ (6 mm, 7,5 mm und 10 mm)zu erlauben, deren Linsenbau tief in den Kamerakörper hineinragte. Außerdem war die Spiegelarretierung notwendig bei Motorbetrieb mit 4 Bildern in der Sekunde.

Allerdings lässt sich dieses Manko umgehen, indem man den Auslöser nur halb eindrückt. Der Spiegel wird dann hochgeklappt, und der Verschluss nicht ausgelöst.

Selbstauslöser

Wie schon auf dem Foto zu erkennen, verfügt die F über einen Selbstauslöser. Dieser wird interessanterweise nicht über den normalen Auslöser gestartet, sondern hat einen eigenen kleinen Auslöserknopf, der beim Drehen des Hebels freigelegt wird. Weiße Punkte an der Fassung erlaubte Vorlaufzeiten von 3, 6 oder den vollen 10 Sekunden abzulesen. Unter anderem an der Bauweise des Selbstauslösers im Detail erkennt man die jeweilige Modellgeneration.
[bearbeiten] Springblende

Als moderne Kamera verfügt die Nikon F zusammen mit den für sie gebauten Objektiven über eine Springblenden-Funktion, die gleichzeitig mit dem Verschlussablauf wirksam wird.

Darüberhinaus „kommunizieren“ die Objektive älterer Bauart mit dem Belichtungsmesser im Photomic-Sucher. Hierfür dient die Nikon-typische (und heute nicht mehr verbaute) „Gabel“ am Blendenring. Nach Einführung der Ai-Objektive 1977 wurde dieses Verfahren obsolet.


Weitere Entwicklung in der Geschichte


Alle diese Ausstattungsmerkmale gehören immer noch zum heutigen Standard für professionelle Spiegelreflexkameras. Verbesserungen in der weiteren Entwicklung der Fotoindustrie waren im Wesentlichen nur die Verschlusssteuerung durch Microcomputer (und damit die präzisere Einhaltung der Zeiten und Ermöglichung der Belichtungsautomatik) und die Verkürzung der minimalen Verschlusszeit.

Im Hause Nikon: Ersteres wurde 1980 bei ihrer elektronisch gesteuerten „Enkelin“, der Nikon F3 verwirklicht. Letzteres schon 1971 mit der 1/2000 Sekunde bei der Nikon F2 später in der FM-Familie mit einer mechanischen 1/4000 Sekunde (am bekanntesten: Nikon FM2) und dann 1988 mit der 1/8000 Sekunde bei der Nikon F4 (vorher schon bei der F801), die dann gleichzeitig den Schritt in das Autofokus-Zeitalter markiert, den manche Fotografen bis heute nicht gegangen sind.


Sammelobjekt und heutiger Einsatz


Altersbestimmung

An den ersten beiden Zahlen der Seriennummer erkennt der Sammler das Baujahr einer Nikon F (und auch einer F2). Allerdings ist es genau genommen das Baujahr der Gehäuse-Oberkappe. Wurde die mal in einer Reparatur ausgewechselt, so sagt sie nichts mehr über das Baujahr der eigentlichen Kamera aus.

Da die Nikon F allerdings im Laufe ihrer Bauzeit auch immer in Details verändert wurde, kann man am Grundgehäuse in jedem Fall den Zeitraum eingrenzen, aus dem es stammt.

Funktionsprüfung

Image
Außer den neuen, direkt für DSLRs entworfenen Objektiven können alle Nikon-Objektive an der F verwendet werden. Die Abbildung zeigt eine moderne D50 mit einem herkömmlichen AF-Objektiv 50 mm 1/1,4, das genauso auch an der F daneben benutzt wird.

Die Nikon F ist äußerst robust gebaut, daher gibt es nur wenige Schwachstellen, die in die Jahre gekommene Modelle aufweisen können. Das eine sind die oben bereits erwähnten Führungsschlitze für die abnehmbare Rückwand. Sind sie beschädigt, kann das Lichteinfall bedeuten.

Da die Bedienung der F denkbar übersichtlich ist, ist ein mechanischer Funktionscheck „in Augenscheinnahme“ schnell erledigt. Lässt sich der Auslöser weich auslösen, hat das Titan-Rollo des Verschlusses keine Dellen und Löcher und wackelt auch kein Objektiv an ihr, muss dann nur noch mit eingelegtem Film überprüft werden, ob sie die Verschlusszeiten einigermaßen gleichmäßig einhält. Besitzt man bereits Nikon-Objektive oder welche von Fremdherstellern mit F-Bajonett, so kann man diese alle verwenden. Es ist zu prüfen, ob die automatische Springblende funktioniert. Dafür sollte die Betätigung der Abblendtaste reichen.

Gebrauchtmarkt

Die F wurde sowohl in schwarz, als auch verchromt angeboten. Die schwarzen Gehäuse sind seltener, und ein unbeschädigter und nicht überpinselter Lack ist meist nur bei Exemplaren zu finden, die von der Vitrine in die Vitrine wandern. Die Funktionalität der schwarzen F wird davon nicht beeinträchtigt, und je beschädigter der Lack ist, desto weniger kann der Verkäufer für sie verlangen. Das darunter hervorscheinende Messing der Gehäuseoberkappe, des Suchers und der Bodenplatte verleiht ihr eine vielleicht beim Fotografen erwünschte Patina.

Durch ihre hohe Stückzahl und damalige Verbreitung sind die Gebrauchtpreise erstaunlich moderat und siedeln deutlich unter denen aller ihrer direkten Nachfolger der F-Serie und sogar der FM-Familie. Exemplare mit Photomic-Sucher können das doppelte kosten wie solche ohne ihn (also nur in der Grundausstattung mit Prismensucher als „reine“ Nikon F). Der Differenzbetrag reicht für die Anschaffung eines professionellen modernen Handbelichtungsmessers, wenn man denn auch mit ihr fotografieren will. Sie eignet sich nämlich als leichte „analoge Begleiterin“ einer digitalen Spiegelreflex mit dem gleichen F-Bajonett, oder auch als Zweitgehäuse für eine ihrer analogen Nachfolgerinnen.

Der Motor F-36 ist alleine nur äußerst selten zu finden. Für den Anbau an eine F muss diese mit einer speziellen Bodenplatte für Motorbetrieb versehen werden und dann - wie schon immer - vom Hersteller selber modifiziert und für jede Kamera-Motor-Kombination mechanisch abgestimmt werden. Dieses Manko wurde mit Einführung der F2 überwunden; seit der F3 „hakt“ der Motor auch nicht mehr bei falsch eingestellter Serienbildfunktion und zu langen Belichtungszeiten. Das ist bei der F mit Motor ein mechanisches Problem, das zusätzlich beachtet werden muss.

Nicht mehr funktionierende Exemplare der Nikon F dienen nicht nur als Ersatzteillager für andere Exemplare, sondern auch für die Messsucherkameras der historischen (viel selteneren und begehrteren) S-Serie, die über weite Teile baugleiche Elemente (z.B. den Verschluss) aufweist.

Kompatibilität mit Blitzgeräten

Wie auch ihre Nachfolgemodelle F2 und F3 hat sie keinen normalen Blitzschuh, sondern einen für die damaligen F-Modelle typischen eigenen Blitzanschluss über der Rückspulkurbel. Es gab aber einen Adapter - es passt sogar jener, der für die F2 hergestellt wurde. Blitzautomatik bietet diese rein mechanische Kamera natürlich nicht. Studio- und Stabblitzgeräte können selbstverständlich über den Kabelanschluss ausgelöst werden.


Literatur


* Paul Comon: Magic Lantern Guides Classic Series. Nikon Classic Cameras. Bd 1 for F, Nikkormat Series, Fe, Fe2nd Fa (Nikon Classic Cameras). Magic Lantern Guides, New York 1996. ISBN 1883403316
* Uli Koch: Nikon F. Peter Coeln, Wien 2003. ISBN 3-95014-430-7
* Uli Koch: Nikon F. The Camera. Peter Coeln, Wien 2003. ISBN 3-95014-431-5
* Uli Koch: Nikon F. The Lenses. Peter Coeln, Wien 2003. ISBN 3-95014-432-3
* Uli Koch: Nikon F. The Accessories. Peter Coeln, Wien 2004. ISBN 3-95014-433-1



Quelle


Wikipedia

Weblinks

* Gebrauchsanweisung als PDF (Engl.)
* Ausführliche Beschreibung mit Fotos (Engl.)
* Uli Koch: Nikon F Book (Engl.)
* Homepage eines Sammlers (Engl.)
* Nikon Japan: The History of Nikon Cameras - Nikon F (Engl.)
* Nikon F - Nikon System online (Deutsch)
* Nikon F Collection & Typology by Richard de Stoutz (Engl.)




Kategorien: Exzellent | Nikon-Kamera | Fototechnik | Kamerahersteller | Fotografie
Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 14:57   Titel: Lochkamera

Lochkamera

Wechseln zu: Suche


Eine Lochkamera ist das einfachste Gerät, mit dem sich optische Abbildungen erzeugen lassen. Sie benötigt dafür keine optische Linse, sondern nur eine dunkle Zelle (eine camera obscura), eine kleine Öffnung in dieser Zelle und eine Abschirmung, um das entstandene reelle Bild zu betrachten.



Funktionsweise



Funktionsweise einer Lochkamera


Ähnlich wie bei einer optischen Linse erzeugt ein kleines Loch auf einer Projektionsfläche eine Abbildung von angestrahlten oder selbst leuchtenden Gegenständen. Die Zeichnung rechts zeigt zwei Strahlenbündel, die von zwei Punkten eines Gegenstands in das Loch eintreten. Der kleine Durchmesser der Blende beschränkt die Bündel auf eine kleine Öffnung und verhindert die vollständige Ãœberlappung der Lichtstrahlen. Strahlen vom oberen Bereich eines Gegenstands fallen auf den unteren Rand der Projektionsfläche, Strahlen vom unteren Bereich werden nach oben weitergeleitet. Jeder Punkt des Gegenstands wird als Scheibchen auf der Projektionsfläche abgebildet. Die Ãœberlagerung der Scheibchenbilder erzeugt ein verzeichnungsfreies Bild. Mathematisch ausgedrückt ist das Bild das Ergebnis einer Faltung aus idealer Abbildung des Gegenstands mit der Blendefläche. In der rein theoretischen Betrachtung, ist die Lochkamera das Ideal einer Kamera.


Abbildungsgeometrie einer Lochkamera


Unschärfefleck


Abbildungsgeometrie der Lochkamera

Der Abstand der Projektionsfläche zum Loch ist die Bildweite b. Löcher können im Gegensatz zu Linsen die einfallenden Lichtstrahlen nicht brechen und demzufolge auch nicht bündeln. Es existiert kein Brennpunkt (F) und keine Brennweite (f). D ist der Durchmesser des Lochs. Der Quotient b/D ergibt die Blendenzahl, analog zur Blendenzahl f/D beim Objektiv. Je kleiner die Blendenzahl ist, desto lichtstärker ist das Bild. Eine Kammer mit b=100 mm und D=0.5 mm hat eine Blendenzahl von 100mm/0,5mm = 200. Eine Vergrößerung des Lochs auf 1 mm verringert die Blendenzahl auf 100mm/1mm = 100. Die Belichtungszeit verringert sich dabei um den Faktor 4 (Verhältnis der Lochflächen: (1mm/0.5mm)2 = 4). (Zum Vergleich: Kleinbildkameras haben kleinste Blenden zwischen 1,4 und ca. 4.)

Je kleiner der Lochdurchmesser D ist, desto kleiner sind die Strahlenbündel, umso schärfer erscheint die Abbildung. Für die Größe S des Unschärfeflecks gilt dabei



Die Bildgröße eines Lichtpunkts nimmt also linear mit der Blendengröße ab. Hierdurch gewinnt das Bild an Schärfe, wenn zu einer geringeren Blendengröße übergegangen wird. Oft wird dies verwechselt mit der Vermutung, dass das Bild insgesamt mit abnehmender Blendengröße kleiner wird. Kleiner werden jedoch nur die Unschärfen, die das Bild eines beobachteten Gegenstandes an dessen Begrenzungslinien "ausfransen" lassen.

Schärfentiefe



Vergleich: Foto einer Häuserzeile mit
Lochkamera (Schwarzweißaufnahme auf Filmmaterial) und
Linsenkamera (Farbaufnahme auf Halbleitersensor)



Die Schärfe der Bilder ist von der Entfernung der abzubildenden Gegenstände zum Loch (Gegenstandsweite) nicht abhängig. Es ist also keine Entfernungseinstellung erforderlich, die „Schärfentiefe“ ist „unendlich“. (Dies ist ein grundsätzlicher Unterschied zu mit Linsen ausgestatteten Kameras, bei denen eine Entfernungseinstellung erforderlich ist und die deshalb auch als „fokussierende“ Kameras bezeichnet werden.) Die Bilder sind jedoch nie ganz scharf, da das Loch aus Gründen der Lichtstärke und Beugung nicht beliebig klein gewählt werden kann. Bei großen Bildweiten (starke Vergrößerungen) hat die Lochkamera jedoch ein befriedigendes Auflösungsvermögen, feine Details lassen sich befriedigend erkennen.

Unabhängig von der Lichtstärke bildet die Wellenlänge des Lichts eine unter Grenze für D. Beugungserscheinungen treten bei allen Wellenlängen auf. Rot wird etwas stärker als Blau gebeugt.

Bildgröße



Bildgröße bei der Lochkamera


Bezeichnet G die Gegenstandshöhe ( = tatsächliche Größe des betrachteten Gegenstandes), g die Gegenstandsweite (= Abstand des Gegenstandes von der Lochscheibe), b die Bildweite (= Abstand von der Lochscheibe zur Mattscheibe) und B die Bildhöhe (= Höhe des erzeugten Bildes auf der Mattscheibe), so gilt:


Diese Gleichung ist aus der geometrischen Optik auch als 1. Linsengleichung bekannt, sie gilt in gleicher Weise für fokussierende Kameras. Die Bildgröße hängt also nur von den Abständen ab, nicht jedoch von der Blendengröße bzw. Lochgröße.

Anwendungen


Spalte im Korbgeflecht erzeugen Sonnenbildchen links an der Wand.

Im Alltag beobachtet man zuweilen Abbildungen an kleinen Öffnungen. Das Bild rechts zeigt einen Korbstuhl, der seitlich von der Sonne beschienen wird und links an der Wand einen Schatten wirft. Die engen Spalte des Korbgeflechts erzeugen Lichtmuster auf der Wand in Form runder Scheibchen einheitlicher Größe. Hierbei handelt es sich um Abbilder der kreisförmigen Sonne, nicht etwa um Umrisse des Geflechts.

Ähnliches beobachtet man im Wald, wenn Zwischenräume in dichtem Blattwerk die Sonne auf dem Boden als verschwommene Kreisscheiben abbilden (sogenannte Sonnentaler). Wer den Grund dafür nicht kennt, ist dann sehr überrascht, dass bei einer partiellen Sonnenfinsternis diese Sonnentaler als „Halbmöndchen“ erscheinen.

Auch werden Lochblenden als abbildende Linsen für Röntgenstrahlung eingesetzt. Denn, anders als für sichtbares Licht, gibt es für diese kurzwellige Strahlung keine Materialien mit geeigneter Brechzahl, aus denen sich Linsen herstellen ließen.

Auswirkungen der Lichtbeugung


Beugungserscheinungen an der Lochblende setzen der klassischen Betrachtungsweise Grenzen. Der Durchmesser S des Unschärfeflecks vergrößert sich dadurch um den Durchmesser ΔS des Beugungsscheibchens. Für diesen gilt vereinfacht:



Dabei ist c eine Konstante, die hier mit ≈ 1 µm angenommen werden kann.

Nach der strahlenoptischen Betrachtung nimmt die Größe des Unschärfeflecks linear mit der Blendengröße ab (siehe oben). Die Lichtbeugung zeigt ein umgekehrtes Verhalten: Die Unschärfe verhält sich umgekehrt proportional zum Lochdurchmesser. Der optimale Durchmesser Dopt ist der Wert, für den beide zusammen am kleinsten sind. Die Extremwertsuche liefert:



Für g>>b gilt die Näherung: .

Mit c = 1 µm liefert die Formel den Wert für Dopt in Millimeter, wenn b in Meter eingesetzt wird.

Der optimale Durchmesser ist damit ein wenig kleiner als die innere Zone einer Fresnel-Zonenplatte.

Beispiele:

<table>
<tr>
<th> Bildweite <b>b</b> (Länge der Lochkamera)</th>
<td> Optimale Blendenöffnung <b>D<sub>opt</sub></b> für weit entfernte Objekte</td>
<td> Größe des Unschärfeflecks <b>S</b> für unendlich entfernte Objekte</td>
<td> Blendenzahl <b>b/D</b>
</td>
</tr>
<tr>
<th> 1 cm</th>
<td> 0,1 mm</td>
<td> 0,11 mm</td>
<td> 100</td>
</tr>
<tr>
<th> 10 cm</th>
<td> 0,32 mm</td>
<td> 0,63 mm</td>
<td> 312</td>
</tr>
<tr>
<th> 1 m</th>
<td> 1 mm</td>
<td> 2 mm</td>
<td> 1000</td>
</tr>
<tr>
<th> 10 m</th>
<td> 3,2 mm</td>
<td> 6,3 mm</td>
<td> 3100</td>
</tr>
</table>


Die „Optimierung“ bezieht sich hierbei ausschließlich auf die Bildschärfe! Die Lichtstärke dieser Kameras (abzulesen an der Blendenzahl in der letzten Spalte) ist sehr gering. Bei Belichtung auf Filmmaterial ist selbst bei hellem Sonnenschein der Schwarzschildeffekt zu berücksichtigen!


Vergleich zur fokussierenden Kamera

Im Vergleich zu denen einer fokussierenden Kamera sind die Bilder einer Lochkamera in der Regel unschärfer, da das Loch wegen der Lichtstärke und wegen der Lichtstreuung nicht beliebig klein gewählt werden kann. Bei großen Bildweiten (starken Vergrößerungen) lässt sich mit einer die Lochkamera jedoch ein besseres Auflösungsvermögen erreichen als mit einer fokussierende Kamera mit kurzer Brennweite. Außerdem sind ihre Bilder frei von Verzeichnungen und Farbsäumen

Schließlich ist zu beachten, dass bei einer fokussierenden Kamera bei einer gegebenen Fokussierung immer nur die Gegenstände in einer bestimmten Gegenstandsweite scharf abgebildet werden. Je nach der Blendenzahl nimmt die Schärfentiefe für davor oder dahinter liegende Gegenstände rasch ab. Dies ist jedoch nicht auf die Eigenschaften einer linsenlosen Kamera (Lochkamera) oder einer linsenbehafteten Kamera (in diesem Fall fokussierenden Kamera) zurück zu führen, sondern beruht auf dem (optischen Gesetz) Zerstreuungskreis.


Experimente



Foto, aufgenommen mit einer Lochkamera aus Beton


Das Funktionsprinzip einer Lochkamera sowie die Lichtausbreitung lassen sich gut mit einfachen, auch für Kinder geeigneten Experimenten verdeutlichen. Lochkameras lassen sich aus Streichholzschachteln, Getränke- oder Keksdosen bauen - aber selbst Wassertonnen oder Baucontainer kommen in Frage.

Zum Beispiel kann eine Kiste oder Dose innen matt geschwärzt und an einer Seite mit einem 0,2…1 mm großen Loch versehen werden. Ist die Lochkamera zum Betrachten von Bildern gedacht, so ist die Rückseite eine Mattscheibe (Transparentpapier), die durch eine Röhre oder ein Tuch vor Streulicht geschützt ist.

Man kann mit einem solchen Behälter aber auch wirklich fotografieren. Dazu wird bei absoluter Dunkelheit ein Film oder anderes lichtempfindliches Material auf der dem Loch gegenüberliegenden Innenwand fixiert und das Loch dann dicht verschlossen. Anschließend wird bei Helligkeit das Motiv gewählt, der Verschluss geöffnet und nach Ende der Belichtungszeit wieder verschlossen. Die Dauer der Belichtung ist (wie bei der herkömmlichen Fotografie) von vielen Faktoren abhängig: der vorhandenen Lichtintensität, der Größe des Lochs, der Länge des Lichtweges und der Bewegung des Motivs; sie kann zwischen 1 Sekunde und mehreren Minuten betragen. Bei der Entwicklung des Films entsteht ein Negativ, das ggf. durch eine Kontaktkopie zu einem Positiv verarbeitet werden kann. Für ein gutes Ergebnis ist eine exakte Rundung des Lochs wichtig. Ausgefranste Lochränder verstärken die oben beschriebene Lichtbeugung und führen zu unscharfen Bildern. Da bei größeren Bildwinkeln die Ränder des Negativs deutlich weniger Licht erhalten, bleiben sie (bei gleicher Helligkeit des Objektes) heller; das Positiv wird am Rande also dunkler. Wenn dieser Vignetteneffekt unerwünscht ist, muss man beim Umkopieren durch manuelles Abwedeln für eine gleichmäßige Belichtung sorgen.


AV1, zur Lochkamera umgebaut

Eine weitere Möglichkeit, sich eine Lochkamera selbst zu schaffen, besteht im einfachen Umbau eines analogen Fotoapparates. Dieser muß dazu lediglich über eine Wechseloptik verfügen, damit man das Objektiv vollständig entfernen kann, sowie eine Auslösemöglichkeit, bei der der Verschluss sich beliebig lange offenhalten lässt. Die Optik wird entfernt und durch eine Blindkappe ersetzt, die mit einer entsprechenden Bohrung versehen wird. Optimal ist ein kleiner Vorsatzhalter für verschiedene Lochblenden. Diese Konstruktion bietet den Vorteil, dass man mehr als nur „einen Schuss“ hat und den eingelegten Film (schwarz/weiss oder farbig) hinterher zum Entwickeln abgeben kann, also keine Dunkelkammer oder sonstiges Zubehör benötigt.


künstlerische Aspekte


Bestimmte Eigenschaften der Lochkamera-Fotografie haben Künstler schon immer fasziniert. Dazu gehört in erster Linie die grafisch-flächige Wirkung solcher Fotografien: durch die gleichmässig über das Bild verteilte Schärfentiefe tritt die räumliche Wahrnehmung des Objekts zurück - alles "wirkt wie gezeichnet". Ein weiterer Aspekt ist die Tatsache, dass sich schnell durch das Bild bewegende Objekte bei langen Belichtungszeiten nicht mehr auf dem Foto wiederfinden: es ist somit z. B. möglich, den Markusplatz in Venedig oder den Stachus in München völlig ohne Menschen oder Fahrzeuge abzulichten. Andererseits ergibt sich aus dieser Tatsache, dass eine Landschaftsaufnahme möglichst bei völliger Windstille erfolgen muss, wenn man keine Verwischungen in den Ästen der Bäume haben will. Der Effekt der Mehrfachbelichtung kann jedoch gerade bei Portrait-Aufnahmen gewünscht sein; es verleiht diesen Aufnahmen eine besondere Lebendigkeit.


Literatur


deutsch

  • Thomas Bachler: Arbeiten mit der Camera obscura, Lindemanns 2001, ISBN 3895062227
  • Reinhard Merz und Dieter Findeisen: Fotografieren mit der selbstgebauten Lochkamera, Augustus Verlag, Augsburg, 1997, ISBN 3-8043-5112-3
  • Peter Olpe: Die Lochkamera - Funktion und Selbstbau, Lindemanns Verlag, Stuttgart 1995, ISBN 3-928126-62-8 und Lochkamera. Lindemanns 2001. ISBN 3895061727
  • Ulrich Clamor Schmidt-Ploch. Die Lochkamera. Abbildungsoptimierung. Physikalische Hintergründe. BoD GmbH, Norderstedt 2001. ISBN 3831112614


englisch

  • John Warren Oakes: Minimal Aperture Photography Using Pinhole Cameras, ISBN 0819153702 & 0819153699


Bauanleitungen






Weblinks




Quelle

Teile des Artikels inkl. Bilder entstammen dem Artikel Lochkamera von de.wikipedia.org. Dort findest Du weitere informationen über Autoren, Urheberrecht und Lizenzen.

Kategorie:
Beitrag Forum: Fotowiki   Geschrieben: Sa, 29. Dec 2007 18:55   Titel: Digitalfotografie

Digitalfotografie

Wechseln zu: Suche

Als Digitalfotografie wird zusammenfassend die Fotografie mit Hilfe eines digitalen Fotoapparats oder die Arbeit mit digitalisierten Bildern sowie die sich daran anschließende Weiterverarbeitung mittels elektronischer Bildbearbeitung sowie digitaler Präsentation und Archivierung bezeichnet.

Die Digitalfotografie weicht in zahlreichen Aspekten von der klassischen optochemisch basierten Fotografie ab und ähnelt, insbesondere bei der Bildwandlung, einerseits der Videotechnik, andererseits den bildgebenden Verfahren.












Sony Mavica FD5



Bilderzeugung

Bildwandlung

In der Digitalfotografie gibt es – von Hybridverfahren wie der Kodak Photo CD abgesehen – keinen chemischen Film mehr; zur Wandlung der Lichtwellen in digitale Signale werden Halbleiter-Strahlungsdetektoren in CCD- oder CMOS-Technik als Bildsensoren verwendet. Bei dieser Digitalisierung eines analogen Bildes handelt es sich um eine Bildwandlung, bei der eine Diskretisierung (Zerlegung in Bildpunkte) und Quantisierung (Umwandlung der Farbinformation in einen digitalen Wert) des analogen Bildes durchgeführt wird.

Hybridverfahren

Eine Ãœbergangslösung zwischen analoger und digitaler Fotografie stellt die Fotografie mit dem klassischen "Silberfilm" dar, bei der anschließend das Negativ oder Positiv zunächst mit einem Scanner digitalisiert wird und dann das gespeicherte Bild digital weiterbearbeitet wird.

Die manuellen Arbeitsschritte kann man sich sparen, wenn man vom industriellen Fotolabor eine Kodak Photo CD herstellen lässt; dabei wird der – noch ungeschnittene – Filmstreifen direkt im Anschluss an die Entwicklung mit professionellen Scannern in hoher Qualität digitalisiert und auf eine CD gebrannt. Als kostengünstigere Alternative sind etwa seit 1999 sogenannte Picture Discs von verschiedenen Anbietern auf dem Markt, auf denen die Aufnahmen mit geringerer Auflösung im verlustbehafteten JPG-Format gespeichert werden. Die Qualität der Picture Disks ist in der Regel jedoch nicht für eine Weiterverarbeitung ausreichend, sondern nur zur Vorbetrachtung geeignet.

Kamerainterne Bildverarbeitung


Jede Digitalkamera führt nach oder bereits während der Bildwandlung eine Reihe von Verarbeitungsprozessen wie Weißabgleich, Erhöhung der Farbsättigung, Anheben des Kontrasts, Tonwertkorrektur, Filterung, Schärfen, verlustbehaftete Komprimierung usw. durch; Consumer-Kameras schärfen auch dann noch nach, wenn man diese Funktion abgeschaltet hat (vgl. Andrea Trinkwalder, Raw-Masse. Höhere Farbtiefe, weniger Fehler: Bessere Bilder dank Rohdaten).

Um auf das vollkommen unbearbeitete Bild zuzugreifen empfehlen sich hochwertige Kameras, die ohne jeglich interne Kameraverarbeitung Schärfung, Datenreduktion etc. den kompletten Datensatz des Sensors als Kopie im RAW-Bild speichern.


Bildeigenschaften


Seitenverhältnis

Die meisten Digitalkameras speichern Bilder mit einem Seitenverhältnis von 1,33 (4:3). Dies hat historische Gründe: Die ersten Digitalkameras waren auf existierende Sensoren angewiesen und da 4:3 dem Seitenverhältnis der verbreiteten Computermonitore und Fernsehnormen NTSC, PAL und SECAM entspricht (was wiederum von den frühesten Kinofilmen herrührt), waren überwiegend Sensoren mit diesem Seitenverhältnis verfügbar. Inzwischen werden Sensoren mit dem Seitenverhältnis 3:2 speziell für Digitalkameras entwickelt und zumeist in digitalen Spiegelreflexkameras eingesetzt. Panasonic bietet Kameras an, die mit Bildwandlern im Format 16:9 ausgerüstet sind, und durch Weglassung von Bildspalten in der Lage sind, zusätzlich auch die Bildformate 3:2 und 4:3 zu unterstützen.

In der Ausbelichtung hat ein Seitenverhältnis von 4:3 die Konsequenz, dass das Bild bei Verwendung der herkömmlichen 3:2-Papierformate (z.B. 10x15 cm) entweder oben und unten beschnitten wird oder links und rechts weiße Streifen auftreten. Daher werden heutzutage meist Papierformate mit den Seitenverhältnissen 4:3 verwendet. Hierbei wird dann zum Beispiel oft von einem 10er-Format gesprochen, um anzuzeigen welche Höhe der Abzug aufweist; die Breite des Abzugs ergibt sich dann entsprechend dem Seitenverhältnis. Diese Papierformate weichen zwar von den klassischen Papierformaten (Abzügen) ab, der Abzug zeigt jedoch unbeschnitten das komplette Bild. Ein Abzug im 10er-Format mit den Seitenverhältnissen 4:3, ist 10x13,33 cm groß und passt mit den oben beschriebenen Einschränkungen nur bedingt in die üblichen Bilderrahmen.

Pixelanzahl und Auflösung

Als Bildauflösung bezeichnet man die Anzahl der Bildpunkte, Pixel genannt, in Breite und Höhe eines digitalen Bildes; bei 1600 x 1200 Pixeln ergibt sich also beispielsweise eine Auflösung von 1,92 Megapixeln.

Die Herstellerangaben zur Pixelanzahl müssen kritisch interpretiert werden, da sie nicht die tatsächlich vorhandene Anzahl an Farbpixeln wiedergeben. Bei dem weit verbreiteten Bayer-Sensor ist dies die Anzahl der einfarbigen Pixel, für den Foveon-X3-Sensor die Anzahl der lichtempfindlichen Elemente multipliziert um den Faktor drei.

Daher ist es nicht möglich, die Pixelanzahl der verschiedenen Sensortypen direkt miteinander zu vergleichen; nach Schätzungen liefert ein Bayer-Sensor mit sechs Megapixeln etwa dieselbe Auflösung wie ein Foveon-X3-Sensor mit 10 Megapixeln. Einen weiteren proprietären Sensor verwendet Fujifilm, siehe Super-CCD-Sensor.

Die Auflösung digitaler Bilder ist nur eingeschränkt mit der Auflösung eines Filmnegativs oder Prints zu vergleichen, da sie u. a. vom Betrachtungsabstand und der Art der Darstellung (Bildschirm, Print) abhängig ist.

Auf normales Fotopapier ausbelichtete Digitalfotos erreichen die Qualität von konventionellen Papierabzügen – hier entscheidet vielmehr die verwendete Kamera, das Objektiv sowie eine Reihe weiterer Faktoren über die technische Bildqualität.

Die Pixelanzahl gibt auch nur näherungsweise die Auflösung feiner Strukturen wieder. Bei der Digitalisierung gilt das Nyquist-Shannon-Abtasttheorem. Danach darf die maximale im Bild auftretende Frequenz maximal halb so groß sein, wie die Abtastfrequenz, weil es sonst zu unerwünschten Bildverfälschungen, zum Beispiel zu Moiréerscheinungen, kommt und das Originalsignal nicht wieder hergestellt werden kann.

Eine weitere Einschränkung der Vergleichbarkeit konventioneller und digitaler Aufnahmen ergibt sich aus der Tatsache, dass es sich beim Filmkorn - technisch betrachtet - um ein stochastisches, also ein völlig zufälliges und unregelmäßiges Rauschen handelt, das bei technisch gleicher Auflösung meist weitaus weniger störend wirkt als das strikt regelmäßige Pixelmuster digitaler Aufnahmen. Dieses Pixelmuster hingegen kann durch geeignete Software nach Kalibrierung auf den jeweiligen Sensor perfekt entfernt werden, was bei chemischem Film wiederum erneut nicht möglich ist. Visuell wirken somit "analoge" Bilder mit sichtbarem Korn - bei gleichem Informationsgehalt - entweder erträglicher oder gestört.

In der Praxis bedeutet das, dass man vor der Digitalisierung die maximale Frequenz kennen oder herausfinden muss und dann das Signal zwecks Digitalisierung mit mehr als der doppelten Frequenz abgetastet werden muss. Bei der Digitalfotografie kann man, um die Moireerscheinungen von vornherein zu vermeiden, die Optik leicht unscharf stellen. Das entspricht einem Tiefpass. Wenn die Pixelzahl des Sensors erhöht wird, muss die Optik neu angepasst werden, weil sonst die erhöhte Pixelzahl nicht ausgenutzt werden kann.

Beim Scannen gerasterter Bilder muss man die Auflösung ebenfalls so groß wählen, dass die feinsten Strukturen des Rasters dargestellt werden können. Anschließend kann man entrastern (dazu gibt es unterschiedliche Funktionen) und dann die Auflösung herabsetzen.

Spoiler: [ Anzeigen ]


Dateiformat


Bei der Digitalfotografie entstehen in jedem Fall Daten, die in der Regel elektromagnetisch oder optisch gespeichert werden; dies geschieht meist in einem standardisierten Grafikformat. Aktuelle Digitalkameras verwenden JPEG, einige besser ausgestattete auch das Rohdatenformat und TIFF. Bei den Hybridverfahren wie der Kodak Photo CD entstehen ImagePacs, beim Scannen hat man meist eine größere, freie Auswahl über das Speicherformat.

Für maximale Bildqualität in der Nachbearbeitung empfiehlt sich das unkomprimierte Rohdatenformat. Hier werden die unbearbeiteten Bildsensordaten unkomprimiert gespeichert. Dieses Format bedarf größerer Mengen Speicherplatz und wird insbesondere im professionellem Umfeld angewendet.

JPEG ist dagegen verlustbehaftet, kann aber je nach Kompressionsgrad sehr speicherökonomisch, unter günstigen Umständen aber auch sehr nah am Original sein. JPEG2000 beherrscht mittlerweile die verlustlose Komprimierung und einen größeren Farbraum, wird aus Lizenzgründen aber kaum unterstützt. Der Fotograf muss also bereits vor dem Fotografieren eine Entscheidung über den Kompressionsgrad und damit über den möglichen Detailreichtum etcetera fällen. Eine vergleichbare Vorabentscheidung trifft der analog Fotografierende mit der Auswahl des Filmmaterials und der Filmempfindlichkeit, und muss das Filmmaterial wechseln um beispielsweise eine andere Lichtempfindlichkeit oder Filmkörnigkeit zu erreichen.

Es gibt nach wie vor viele proprietäre Dateiformate, die nicht mehr ohne weiteres gelesen werden können, wenn die entsprechende Software nicht mehr verfügbar ist. Daher sollte insbesondere bei den Rohdatenformaten bedacht werden, dass diese nach einigen Jahren unter Umständen konvertiert werden müssen. Eine Möglichkeit diese Probleme zu veringern, besteht in der Umwandlung in ein offenes oder verbreitetes Dateiformat, wie beispielsweise Portable Network Graphics (PNG) oder Digital Negative (DNG).

Meta-Informationen


Zu den Vorteilen der digitalen Bildspeicherung gehört die Möglichkeit, umfangreiche Meta-Informationen in der Datei zu speichern; diese Zusatzfunktion ist im Exchangeable Image File Format (Exif) standardisiert, das es jedoch inzwischen in mehreren Varianten gibt.

Bereits das Hybridsystem APS verfügte über noch vergleichsweise eingeschränkte Möglichkeiten der Speicherung von Meta-Informationen, und auch bei Kleinbildkameras ist das Einbelichten von Zeit- und Datumsangaben sowie der Bildnummer auf den Filmstreifen möglich, wenn die Kamera über eine entsprechende Funktion verfügt. Die analogen Kleinbild-Spiegelreflexkameras Minolta Dynax 9xi und Minolta Dynax 9 verfügen über eine Möglichkeit, zahlreiche Aufnahmeparameter zu speichern und in eine Textdatei ausgeben zu können; allerdings ist der Grad der Integration sowie insbesondere die Zuordnung des jeweiligen Datensatzes zu einem bestimmten Bild eines bestimmten Filmes nicht unproblematisch.

Bei den in die digitale Bilddatei eingebetteten Exif-Daten ist zu beachten, dass einige unzureichende Programme diese Daten bei einer Bildbearbeitung nicht erhalten; dies betrifft z.B. ältere Versionen der Bildbearbeitungssoftware Adobe Photoshop. Natürlich muss man für korrekte Exif-Daten auch daran denken, bei einem Wechsel der Zeitzone die kamerainterne Uhr umzustellen, sonst erhält man unbrauchbare Zeit- und ggf. auch Datumsangaben.


Digitale Aufnahmetechnik


Kameras und Kamerasysteme

Analoge Kameras und Kamerasysteme wurden über Jahrzehnte entwickelt, gepflegt und optimiert; bevor ihre Weiterentwicklung bei den marktführenden Herstellern in den letzten Jahren eingestellt wurde.

Die Bedienung der meisten analogen Kleinbildkameras war ähnlich - wobei Autofokus, Intervallometer, Belichtungsmessung etc. je nach Hersteller deutlich varierte. Die Benutzung von Tasten und Menüsystemen bei Digitalkameras kann deutlich umfassender und komplexer sein und erfordert weiteres Knowhow über das photochemische hinaus - da viele digitale Kameras zahlreiche Funktionen mehr bieten als ihre mechanischen Vorgänger. Bei der Digitalfotografie ist damit zu rechnen, dass der Fotograf bei jedem Systemwechsel neue Dinge erlernen kann, während die Grundlagen stets gleichbleiben - wie Blende, Brennweite, Verschlusszeit etc.

Ähnliches gilt für die System- und Modellpflege; während die klassischen höherpreisigen Kamerasysteme der großen Kamerahersteller, z.B. Nikon, Canon, Pentax über Jahrzehnte unter Beibehaltung einer herstellerspezifischen Kompatibilität gepflegt wurden, gibt es vergleichbares bei digitalen Spiegelreflexkameras. Aufgrund der Modellwechsel bei Digitalkameras ist bei billigen Geräten Zubehör für eine Kamerageneration oder noch für einige Nachfolgemodelle benutzbar.

Einige Hersteller von Digitalkameras wie Hasselblad führten zusammen mit ihren digitalen Kameras auch vollkommen neue Systeme ein, welche wiederum als System ausgerichtet sind.

[b]Digitale Kamerarückwände[b/]

Digitale Bilder können nicht nur mit nativen Digitalkameras oder durch Digitalisieren analoger Vorlagen, sondern auch mit einer digitalen Kamerarückwand angefertigt werden.

Scan Backs funktionieren nach dem Prinzip eines Flachbettscanners; es wird dabei zwischen Single-shot- und Multi-Shot-Verfahren unterschieden.

Objektive


Da heutige Digitalkameras meist Sensoren mit einer gegenüber den klassischen Filmformaten geringeren Fläche aufweisen, verändert sich effektiv die Wirkung der Brennweite des Objektivs. Gegenüber dem Kleinbildfilm ändert sich die Brennweite nicht wirklich, aber der Abbildungsmaßstab des Bildes ändert sich in dem Verhältnis, in dem er sich bei analogen Kameras ändern würde, wenn die Brennweite um den entsprechenden Faktor geändert würde. Dies bedeutet, dass die Brennweite eines Normalobjektivs bei einer Digitalkamera den Effekt eines leichten Teleobjektivs hervorruft. Dies freut zwar den Naturfotografen, führt jedoch zu Problemen für Freunde des Weitwinkelobjektivs: Es ist sehr aufwendig, verzerrungsarme Superweitwinkelobjektive für Digitalkameras zu konstruieren. Dementsprechend teuer sind diese Objektive. Auch verändert sich der Bereich der Schärfentiefe bei gleicher tatsächlicher Brennweite im Vergleich zu analogen Modellen.

Der Formatfaktor der Kamera wird entweder im Datenblatt der Kamera oder des Objektivs angegeben, oder die "effektive" Brennweite wird analog zu Kleinbild angegeben. Besitzer von digitalen Spiegelreflexkameras müssen die "effektive" Brennweite ihrer Wechselobjektive dagegen selbst berechnen, da dieser nicht auf den Objektiven selbst angegeben ist, denn diese Objektive können meist auch auf herkömmlichen Kleinbild-Spiegelreflexkameras eingesetzt werden. Der Formatfaktor liegt hier in der Regel zwischen 1,5 und 2.


Digitale Aufnahmepraxis


Die digitale Aufnahmepraxis weist gegenüber der konventionellen Fotografie einige Besonderheiten auf.

Bildgestaltung


Als Beispiel sei hier die Veränderung der Schärfentiefe erwähnt, die sich aus dem Formatfaktor ergibt (oft fälschlich Brennweitenverlängerung genannt: Die Brennweite eines Objektivs ändert sich jedoch nicht, nur dessen genutzter Bildwinkel durch das veränderte Aufnahmeformat); Objektive, die in der Kleinbildfotografie als Weitwinkel gelten, treten bei den meisten Digitalkameras als Normalobjektiv auf. Da sich die optischen Gesetzmäßigkeiten nicht verändern, nimmt die effektive Schärfentiefe (genauer: der Schärfebereich) des Bildes zu. Mit Digitalkameras ist es daher schwerer als in der Kleinbildfotografie, einen in Unschärfe zerfließenden Bildhintergrund zu erzielen, wie er beispielsweise in der Porträt- und Aktfotografie zur Hervorhebung häufig erwünscht ist. Einige moderne Spiegelreflex-Digitalkameras verfügen bereits über einen vollformatigen Sensor (24x36mm). Diese Kameras verhalten sich genauso wie analoge Kleinbild-Spiegelreflexkameras.

Spezialfunktionen

Viele Digitalkameras bieten dreh- oder schwenkbare Displays, mit denen einige Aufnahmetechniken komfortabler als mit herkömmlichen Kameras machbar sind. Hierzu gehören beispielsweise Aufnahmestandpunkte in Bodennähe, wie sie häufig in der Makrofotografie benötigt werden oder Aufnahmen "über Kopf", um über eine Menschenmenge hinweg zu fotografieren.

Aktuelle Digitalkameras (Stand: 2004) bieten fast ausnahmslos die Möglichkeit der Aufzeichnung kurzer Videoclips von etwa einer Minute im Format QQVGA oder QVGA, teilweise auch mit Ton. Tendenziell ist eine Entwicklung der digitalen Fototechnik zu beobachten, immer weiter mit der Videotechnik zu konvergieren; in Spitzenmodellen ist die Länge der Videoclips nur noch durch die Kapazität des Speichermediums begrenzt; die Bildauflösung liegt dabei im Bereich der Qualität von VHS oder bereits deutlich darüber (VGA, 640 x 480 bzw. PAL, 720 x 576).

Elektronische Bildbearbeitung

Neben der automatisch durch die Kamera durchgeführte Bildverarbeitung eröffnet die Digitalfotografie zahlreiche Möglichkeiten der Bildmanipulation und -optimierung durch die elektronische Bildbearbeitung, die über konventionelle Bildretusche und Ausschnittsvergrößerung weit hinausgehen.

Beispielsweise können aus einer Folge von Einzelbildern komfortabel Panoramafotos montiert, Bildhintergründe ausgetauscht oder Personen aus Bildern entfernt oder hineinkopiert werden.

Speicherung und Archivierung

Als Vorteile gegenüber der chemischen Fotografie wird häufig die entfallende Filmentwicklung sowie die scheinbar einfache, günstige und platzsparende Archivierbarkeit angeführt. All dies erfordert jedoch entsprechende technische Mittel (Computer, Software, CD- oder DVD-Recorder etc.), technische Fähigkeiten und letztlich doch enormen Platz ...und viel Zeit vor dem Computer.

Tatsächlich ist, anders als bei Film, die verlustfreie Langzeitarchivierung digitaler Bilder theoretisch perfekt möglich.

Der Hauptvorteil digitaler Daten ist hierbei, das anders als bei photochemischen Film exakt identische Kopien erzeugt werden können und auf die verschiedensten Speicherorte und Medien verbracht werden können - anders als bei Film, wo es nur ein Original geben kann und alle Kopien verändert und schlechter werden, können digitale Originale, Fehlerfreiheit und Lesbarkeit vorausgesetzt, beliebig oft verlustfrei vervielfältigt werden.

Auch kann eine Kopie des digitalen Archivs in Masterqualität weltweit abrufbar sein, beispielsweise durch eine identische Kopie auf einem Webserver, während Filmarchvmaterialien durch Handhabung und insbesondere unsachgemäße Benutzung leicht verschleissen. Deswegen werden grade in der kommerziellen Nutzung auch heute chemische Filme digitalisiert, um diese Vorzüge etwa im Verlagswesen und der Photoverwertung einzusetzen.

Ein weitere Vorteil digitaler Daten liegt im scheinbar geringem Platzbedarf - gerade große professionelle Archive mit mehreren Millionen Photos können jetzt relativ kompakt archiviert werden. Auch die Indexierung erscheint erleichtert.

Die Langzeitarchivierung digitaler Daten erfordert jedoch einen mit der Zeit steigenden Aufwand um die Datenträgersicherheit, die Fehlerfreiheit sowie die Lesbarkeit der Daten sicherzustellen. Ein zum Teil ungelöstes logistisches, finanzielles und technisches Problem.

In der analogen Fotografie weisen unter vergleichbar günstigsten Bedingungen gelagerte Kodachrome-Dias auch nach 80 Jahren nur geringe Alterungserscheinungen auf; jedoch belichten wenige Nutzer auf Dia aus, um digitale Aufnahmmen zu archivieren.

In der Digitalfotografie wird ein erheblicher Umkopier- und Konvertierungsaufwand betrieben werden müssen, um eine vergleichbare Langzeitarchivierbarkeit und Stabilität zu erreichen.

Speichermedien zum Fotografieren







Drei Ansichten einer CompactFlash-I-Karte

Als Speichermedien werden in der Digitalfotografie hauptsächlich Speicherkarten verwendet. Folgende sind hier gebräuchlich:

  • Memory Stick (MS)
  • Compact-Flash (CF) Karten,
  • Smart Media Karten (SM),
  • Secure Digital Memory Card (SD),
  • Microdrive (MD),
  • PC Card (PCMCIA/ATA),
  • xD-Picture Card (xD).


In der Anfangszeit der Digitalfotogafie wurden auch Disketten und spezielle CD-RW-Medien verwendet.

Compact-Flash-Karten bieten derzeit das beste Preis-Leistungsverhältnis, sind recht robust, gleichzeitig aber auch das sperrigste noch verbreitete Speichermedium, nachdem die PC Card kaum noch in Digitalkameras genutzt wird.

Diese Speichermedien sind im Gegensatz zum fotografischen Film wiederbeschreibbar. Auf einer Speicherkarte von 1 GByte Kapazität lassen sich etwa 100 bis 150 Fotos speichern, die analogen Kleinbildfotos qualitativ ebenbürtig oder überlegen sind (Digitale Spiegelreflexkamera, 8 Megapixel, Rohdatenformat). Für größere Mengen an Fotos (Bildberichterstattung und Reisefotografie) bieten sich preisgünstige und vergleichsweise leicht transportable „Image Tanks“ (2006: ca. 200,- EUR für 80 GByte, also etwa 8000 bis 12000 Fotos, ca. 220 bis ca. 330 Filme) an, die bereits in der einmaligen Benutzung günstiger als Filmmaterial sind, jedoch nahezu unbegrenzt wiederverwendet werden können. Eine weitere Möglichkeit für den Bildberichterstatter ist es, unterwegs ein (meistens ohnehin mitgeführtes) Notebook zu verwenden, mit dem alle Vorteile der digitalen Fotografie ausgespielt werden können: Fotos können ohne Verzögerung sofort begutachtet, sortiert, nachbearbeitet und direkt per Mobiltelefon oder WLAN in die Heimat versandt werden.

Ein Sonderfall der Digitalfotografie unter extremen klimatischen Bedingungen, wie beispielsweise Einsatz im Weltall, Wüste oder Arktis. Anders als Film, der bei hohen Temperaturen seine Eigenschaften ändert, hat die digitale Fotografie hier mit dementsprechend entworfenen Geräten diesen Bereich mit als erstes erobert, da Kosten eine geringere Rolle spielten. Beispiele für extremste Einsatzgebiete sind beispielsweise Raumsonden oder Messbojen. Weiterhin benötigen digitale Kameras kein Filmmaterial, welches grade bei Langzeit-einsätzen durch seinen Platzbedarf Filmkameras Grenzen setzte, während digitale Kameras ihre Bilder drahtlos übertragen können. Wegen der geringeren Ansprüche an die Stromversorgung der vollmechanischen, filmbasierten Spiegelreflexkameras gegenüber digitalen Kameras benötigen diese jedoch eine weitere Funktionsgruppe zur Stromerzeugung.

Speichermedien zum Archivieren


Ein zuverlässiges Langzeitspeichermedium für digitale Daten existiert bisher nicht. Die Problematik wird als digitales Vergessen bezeichnet und zunehmend nicht nur von Fachleuten, etwa von hauptamtlichen Bibliothekaren und Archivaren, sondern auch von Fotoamateuren erörtert.

Selbstgebrannte CDs oder DVDs können selbst bei guter Lagerung bereits nach wenigen Jahren unlesbar werden, von Billigfabrikaten gibt es auch Berichte, dass schon nach einigen Wochen erste Lesefehler auftraten. Lagerungsfehler wie übergroße Hitze (Hutablage Auto), Produktionsfehler etwa in der Qualitätssicherung, unerkannte Brennfehler und Schäden durch die laufende Benutzung (Kratzer) können diese Frist zudem weiter abkürzen.

Problematisch sind auch alle rein magnetisch aufzeichnenden Medien wie Disketten, die insbesondere in der Frühzeit der Digitalfotografie noch häufig als Speichermedium eingesetzt wurden. Besonders riskant erscheint die Archivierung in proprietären Speichermedien wie Zip- oder Jaz-Disks, die nur von einem oder von wenigen Herstellern für einen begrenzten Zeitraum hergestellt werden; entsprechend archivierte Daten können nur so lange genutzt werden, wie das benötigte Lesegerät funktionsfähig bleibt. Auch Festplatten oder Wechselfestplatten sind hier, auf lange Zeit gerechnet, nicht als Sicher zu betrachten. Insbesondere besteht hier ein sehr hohes Risiko für mechanische Beschädigungen.

Als sehr zuverlässig gelten MO-Disketten, für die die Hersteller mindestens zehn, teilweise 30 Jahre die Haltbarkeit garantieren. Entsprechende Laufwerke sind wegen der relativ hohen Kosten jedoch wenig verbreitet. Die MO-Medien sind durch die Verwendung einer Cartridge auch mechanisch sehr gut geschützt. Ebenfalls empfehlenswert sind DVD-RAM-Medien, denen eine deutlich bessere Haltbarkeit als CD-R, CD-RW oder DVD-R/RW nachgesagt wird. Auch DVD-RAM gibt es, ähnlich wie MO, als Cartridge, jedoch sind passende Laufwerke schwierig zu beschaffen.

Bilddatenbanken

Während in der konventionellen Fotografie die Ãœbersicht über die einzelnen Bilder eines Filmes sehr rasch durch einen Kontaktabzug, Index-Print oder auf einem Leuchttisch möglich ist, werden in der Digitalfotografie spezielle Programme zum Auffinden von archivierten Bilddateien benötigt. Die so genannten Bilddatenbanken erzeugen ein Thumbnail des Bildes und bieten Felder zur Beschreibung des Bildes und der Aufnahmesituation; ein gewisser Komfort ergibt sich durch die Metadaten, die durch das EXIF-Format automatisch aufgezeichnet werden (Datum, Uhrzeit, Brennweite, Blende etc.). Für ambitionierte Fotografen oder Berufsfotografen sind Online-Fotoagenturen geeignete Plattformen, um ihre Fotos zu speichern und von dort direkt an die Käufer (Zeitungen, Verlage, Redaktionen etc.) zu vertreiben. Entsprechend große Server und Speicherplätze sind jedoch Voraussetzung. Darüber hinaus ist eine gute „Verschlagwortung“ mit passenden Schlüsselworten wichtig, um diese Datenbanken entsprechend nutzen zu können. Zur Verschlagwortung werden die im Bild gespeicherten IPTC-Felder genutzt.


Präsentation

Digitale Bilder können ebenso präsentiert werden wie konventionelle Fotografien; für nahezu alle Präsentationsformen existieren mehr oder minder sinnvolle Äquivalente. Die Diaprojektion vor kleinem Publikum wird beispielsweise ersetzt durch die Projektion mit einem Videoprojektor (Video-Beamer); das Fotoalbum durch die Web-Galerie; das gerahmte Foto durch ein spezielles batteriebetriebenes Display usw.

Wird eine erneute Bildwandlung (D/A-Wandlung) in Kauf genommen, können digitale Bilder ausgedruckt oder ausbelichtet werden und anschließend genauso wie konventionelle Papierabzüge genutzt werden; sogar die Ausbelichtung auf Diafilm ist möglich.

Allerdings erfordern alle derzeitigen digitalen Präsentationsformen ausreichende Technikkenntnisse sowie recht kostspielige Technik; der billigste Video-Beamer kostet derzeit noch immer etwa das Fünffache eines guten Diaprojektors. Als weiteres neues Problem stellt sich das der Kalibrierung des Ausgabegeräts, was bei den meisten Monitoren, jedoch nur bei wenigen Flüssigkristallbildschirmen (LCDs) möglich ist und insbesondere bei Beamern einen erheblichen Aufwand verursachen kann.


Fotowirtschaft


Durch die enge Verwandtschaft der Digitalfotografie einerseits mit der Videotechnik und andererseits mit der Informations- und Kommunikationstechnik erschienen ab den 80er Jahren eine Reihe von neuen Akteuren wie Sony und Hewlett Packard auf dem Fotomarkt, die ihr Know-how aus dem Bereich der Video- und Computertechnik gewinnbringend einsetzen konnten. Traditionelle Fotoanbieter wie Leica gingen Kooperationen mit Elektronikunternehmen wie Panasonic ein, um kostspielige Eigenentwicklungen zu vermeiden.

Der Digitalfotografie kommt in der Fotowirtschaft eine wachsende Bedeutung zu. So wurden nach Branchenschätzungen bereits 1999 neben 83 Milliarden analogen Fotografien schon 10 Milliarden Digitalbilder hergestellt.

Nach Angaben des Marktforschungsunternehmens Lyra Research wurden 1996 weltweit insgesamt 990.000 Digitalkameras abgesetzt. In Deutschland wurden im Jahr 2003 erstmals mehr Digitalkameras als analoge Kameras verkauft; nach Aussagen des Einzelhandels wurden 2004 bereits teilweise doppelt so viele digitale Geräte wie analoge Kameras abgesetzt.

Die bisher preiswerteste Digitalkamera wurde im Juli 2003 mit der Ritz Dakota Digital vorgestellt; dabei handelt es sich um ein Modell mit einer Auflösung von 1,2 Megapixeln (1280x960 Pixel) und CMOS-Sensor, die in den USA zu einem Preis von 11 USD angeboten wird.

Neben der Ausbreitung der Digitalfotografie in den Massenmarkt gibt es einen Trend zum Zurückdrängen der analogen Fotografie. Seit etwa 2004 ist beispielsweise eine großflächige Verdrängung fotochemischer Produkte aus dem Angebot von Fotohändlern und Elektronikmärkten zu beobachten: So ging das Produktsortiment an fotografischen Filmen deutlich gegenüber dem Vorjahr zurück. Die Entwicklung neuer Materialien für die Fotografie auf Silberfilm bleibt dennoch nicht stehen, so sind 2006 beispielsweise verbesserte Filme von Fuji auf den Markt gekommen, während Kodak die Marktchancen für einen speziellen Schwarz-Weiss-Film mit einer Empfindlichkeit von ISO 24.000 prüft.

Kodak kündigte im Januar 2004 die Einstellung des Verkaufs von Filmkameras in den Märkten der Industrienationen an. Auch Nikon hat die Entwicklung und den Vertrieb analoger Kameras (abgesehen vom Profimodell Nikon-F-Serie|F6) bereits eingestellt. Minolta hat im Frühjahr 2006 angekündigt, aus dem Kamera- und Filmgeschäft auszusteigen. Aus einer Kooperation mit Sony folgt nun, dass Sony die Produktion digitaler Spiegelreflexkameras beabsichtigt, die mit Minolta-Objektiven nutzbar sind.


2004 wurden fast 7 Millionen Digitalkameras verkauft. Für das Jahr 2005 rechnet der Fotoindustrieverband mit 8 Millionen verkauften Digitalkameras.

Außerdem ist eine zunehmende Medienkonvergenz von Fotografie und Computertechnik festzustellen.


Vergleich mit analoger Fotografie


Vorteile

  • Bei digitalen Kompaktkameras kann man mit dem LCD-Bildschirm den Bildausschnitt gut kontrollieren. Hier entspricht die Funktion insofern derjenigen einer Spiegelreflexkamera, als sie das Problem der Parallaxe umgeht, d. h. man sieht bei den meisten Kameramodellen recht genau den Bildausschnitt, der auch fotografisch festgehalten wird. Schwenk- und Drehmonitore vereinfachen die Kontrolle ausgefallener Aufnahmeperspektiven zum Beispiel aus der Froschperspektive oder über Kopf. Allerdings sind die Vorschaubildschirme in heller Umgebung meist schlecht ablesbar, das Arbeiten mit dem Sucher ist in solchen Fällen vorzuziehen.

  • Man kann das Foto gleich nach der Aufnahme zumindest auf grobe Fehler hin kontrollieren und gegebenenfalls noch eine weitere Aufnahme machen. Eine misslungene Aufnahme kann noch in der Kamera gelöscht werden.

  • Wegen der gegenüber Spiegelreflexkameras vergleichsweise schlechten Monitorauflösung kann bei vielen elektronischen Suchern und Monitoren das Bild vor oder nach der Aufnahme vergrößert werden (Softwarelupe), um die Bildschärfe, zum Beispiel bei manueller Fokussierung, besser beurteilen zu können.

  • Der Weg zur Web- oder Printpublikation von Aufnahmen ist kürzer bzw. schneller, weil das Einscannen von Dias oder Papierbildern entfällt. Das elektronische Versenden auch von Einzelnbildern an Verlage und Auftraggeber ist möglich. Ist keine anderweitige Verwendung der Aufnahme geplant, kann man eine verhältnismäßig niedrige Bildauflösung einstellen und die Aufnahme ohne weitere Nachbearbeitung direkt verwenden. Zugang zu elektronischen Medien vorausgesetzt, sind Austausch und Verbreitung von Fotos schnell und einfach möglich.

  • Ein Filmwechsel für unterschiedliche Lichtverhältnisse ist nicht mehr notwendig. Digitalkameras lassen sich einfach an die vorhandene Lichtmenge anpassen; ähnlich wie bei der Fotografie auf Film nimmt die Bildqualität bei erhöhter Empfindlichkeit ab.

  • Ein großer Vorteil der Digitalfotografie ist die Möglichkeit, über den Weißabgleich die Farbtemperatur anzugleichen. Dieser kann manuell oder automatisch vorgenommen werden. Nur wenige, sehr einfache Kameras bieten allerdings keine manuelle Steuerung. Dadurch können Bilder, wie in der Analogtechnik, sowohl bei Tageslicht als auch bei Kunstlicht farbneutral dargestellt werden. In der herkömmlichen Fotografie sind dafür geeignete Farbfilter oder entsprechendes Filmmaterial nötig.

  • Den Besitz eines Computers und entsprechender Bildbearbeitungs- und -archivierungssoftware vorausgesetzt, kann man digitale Fotos nachbearbeiten und indexieren. Durch die weite Verbreitung von EDV in Haushalten und Firmen ist der Zugang zu früher eher schwer zugänglichen Dunkelkammermethoden durch die simulierende Bildbearbeitung gut möglich.

  • Es treten jenseits von Verschleiß, Zeit, verpasster Gelegenheit und Stromverbrauch keine Kosten für missglückte Bilder auf. Für Anfänger besteht die Möglichkeit, kostengünstig zu üben. Durch direkte Rückkoppelung besteht eine in vielen Aspekten relativ steile Lernkurve. Photographische Experimente werden erleichtert bzw. ermöglichst.

  • Mit Digitalkameras ist in der Regel ein längeres, ununterbrochenes Fotografieren möglich, da es nicht wie in der analogen Fotografie nach meist höchstens 36 Bildern nötig ist, den Film zu wechseln. Bei Digitalkameras können – abhängig vom verwendeten Speicher und dem Bildformat – meist mehrere hundert Bilder in Folge aufgenommen werden, bevor eine Unterbrechung zum Wechseln des Speichermediums oder der Batterien nötig ist. Dies macht sich beispielsweise bei der Unterwasserfotografie bemerkbar, wo man bei der analogen Fotografie pro Tauchgang nur maximal 36 Bilder schießen konnte, da man zum Filmwechsel auftauchen müsste.

  • Da die meisten Digitalkameras im Vergleich zum Kleinbildformat kleinere Sensoren verwenden, bieten sie eine wesentlich höhere Schärfentiefe, was Schnappschüsse und Makrofotografie vereinfacht. Durch die kleinere Sensorgröße ist es einfacher, hochwertige und doch kostengünstige lichtstarke Objektive zu bauen.

  • Durch die Motivsuche über den Bildsensor werden auch bei einfachen Kameras Makroaufnahmen ermöglicht, da es keine Parallaxe zwischen Sucher und Objektiv gibt. Aus demselben Grund sind große Zoomfaktoren möglich, da es keine Probleme mit der Ãœbereinstimmung zwischen Sucherbild und Aufnahme gibt.

  • Bildstabilisatoren können auch über die Bewegung des Bildsensors realisiert werden, bei entsprechend ausgestatteten Kameras sind keine speziellen Wechselobjektive erforderlich.

  • Digitale Kameras bieten häufig die Möglichkeit, einfache Video- und Tonaufnahmen zu machen und wiederzugeben.

  • Die meisten digitalen Kameras können direkt an analoge Wiedergabegeräte, wie zum Beispiel Fernseher oder Videoprojektoren, oder aber auch an PictBridge-kompatible Fotodrucker angeschlossen werden.

  • Digitale Spiegelreflexkameras mit entsprechend hochwertiger Optik übertreffen herkömmliche Kleinbildkameras inzwischen, je nach Wertung, in der Abbildungsqualität. Auch können heutige DSLRs bis zu 10 Bilder pro Sekunde bei maximaler Qualität abspeichern. Bei Nutzung des RAW-Formats sind auch nach der Aufnahme weitgehende Bíldmanipulationen möglich.


Nachteile

  • Der im Vergleich zu herkömmlichen Kameras hohe Stromverbrauch kann bei Kameras mit zu kleiner Akkukapazität bzw. zu schwachem Akku ein Problem sein. Neuere Modelle ermöglichen dabei rechnerisch einige hundert Bilder mit einer Akku-Ladung. Wiederaufladbare Akkus haben im Vergleich zu den früher verwendeten, zum Teil speziellen und damit teure Batterien Vorteile. Die Abhängigkeit vom mitgeführten Stromlieferanten bleibt insbesondere bei schwierigen Wetterbedingungen (Kälte, Luftfeuchtigkeit, etc.) oder an abgelegenen Orten ein Problem. Auch ist die Lieferbarkeit von Ersatzteil-Akkus innerhalb der gesamten Kameralebenszeit nicht garantiert.

  • Durch die kleinere Größe des Sensors im Vergleich zum Film ist selbst bei weit geöffneter Blende keine geringere Schärfentiefe erreichbar, weil auch die Brennweite der Objektive kleiner wird. Das kann zum Beispiel bei Porträtfotos störend sein und schränkt typische fotografische Gestaltungsmöglichkeiten stark ein. Abhilfe schaffen digitale Spiegelreflexkameras, welche, bei höheren Kosten, deutlich größere Sensoren besitzen. Seit 2005 gibt es auch digitale Kompaktkameras mit großen Sensoren. Der Effekt kann zum Teil auch mit Bildbearbeitungsprogrammen nachgeahmt werden.

  • Der Bildsensor ist wärmeempfindlich, das heißt, er produziert bei höheren Temperaturen ein höheres Bildrauschen. Kompaktkameras, bei denen der Sensor auch zur Bildvorschau eingeschaltet bleiben muss, neigen bei längerer Betriebsdauer zu erhöhtem Rauschen. Bei digitalen Spiegelreflexkameras ist die Zunahme des Rauschens durch Eigenerwärmung vernachlässigbar, da der Bildwandler nicht zur Motivsuche verwendet werden kann oder sich wegen der geringen Leistungsaufnahme nicht maßgeblich erwärmt.

  • Bildsensoren können durch längerdauernde intensive Lichteinwirkung beschädigt werden.<ref>How to burn a Nikon coolpix 990 sensor</ref> Fertigungsfehler, die Lebenszeit oder Nutzbarkeit beinträchtigend, sind möglich.

  • Kontrastumfang und Farbtiefe sind insbesondere bei sehr kleinen Sensoren meist geringer als bei herkömmlichem Film. Hochwertige DSLR können die Qualität herkömmlichen Films je nach Aufnahmesituation erreichen und, je nach Kamera, im Einzelfall auch übertreffen.

  • Schlechtere Bildauflösung bei Schwarzweiß-Aufnahmen gegenüber vergleichbar guten Filmen und Objektiven. Bei der Verwendung von Bayer-Sensoren und optischen Tiefpässen ist die Farbauflösung verhältnismäßig gering (Ausnahme Foveon-X3). Direkte höherauflösende Schwarz-Weiß-Technik ist, entgegen dem relativ einfach zu sehendem Filmtausch in der Analogtechnik bei der weit verbreiteten Farb-Sensortechnik nur durch Umrechnung der Bilddaten möglich.

  • Bei digitalen Kompaktkameras ist eine teilweise deutliche Auslöseverzögerung festzustellen, die vornehmlich dadurch verursacht wird, dass der Bildsensor auch für den Autofokus ausgewertet wird. Damit sind Aufnahmen von Bewegungsphasen oder ruhige, spontane Schnappschüsse erschwert.

  • Wegen relativ kurzer Produktzyklen hoher Wertverlust der Hardware. Im Vergleich zur analogen Filmtechnik auch relativ schneller Wegfall von Verbrauchsmaterialien und Ersatzteilen. Kaum lokale Reparaturmöglichkeiten.

  • Umstrittene "Haltbarkeit" digitaler Informationen (Dauerhaftigkeit und langfristige Verfügbarkeit von Speichermedien, Datenformaten, Laufwerken, Hard- und Software). Gerade bei Aufnahmen in proprietären Speicherformaten (sogenannte Rohdaten (RAW) mit der ursprünglichen Bildinformation) ist eine zukünftige Verwendbarkeit dieser Rohdaten derzeit nicht sicher abschätzbar. Ein offener Standard für RAW-Daten existiert zwar (DNG bzw. OpenRAW), wird aber bislang (2007) erst von wenigen Herstellern, Kameramodellen und Bildbearbeitungsprogrammen unterstützt.

  • Kompakte Digitalkameras verzichten zugunsten eines möglichst großen Displays zunehmend auf einen optischen Sucher. Dies kann die Bildgestaltung bei sehr hellen Lichtverhältnissen sehr erschweren. Vorhandene optische Sucher sind zum Teil schlechter Qualität.

  • Aufnahmen bei Schwachlicht und in der Nacht sind durch die oft vorgesetzte elektronische Steuerung, Bildrauschen und Akkukapazitätsproblemen erschwert.

  • Die Robustheit und Haltbarkeit einfacher analoger Technik kann, bedingt durch den technischen Aufwand digitaler Technik, nicht erreicht werden.

  • Eine direkte bastlerische Annäherungen an die oder Experimente innerhalb der Phototechnik sind aufwendiger oder schlicht unmöglich.

  • Die Einstiegskosten sind, wie die Kosten für höherwertiges Material, in der digitalen Photographie im Vergleich zur analogen Phototechnik vergleichsweise hoch.


[bearbeiten] Literatur

* Ralph Altmann: Insiderbuch Digitale Fotografie 2. Midas 2003. ISBN 3907020642
* Tom Ang: Digitale Fotografie und Bildbearbeitung. Dorling Kindersley 2002. ISBN 3831003882
* Andreas Kunert. Farbmanagement in der Digitalfotografie. Mitp-Verlag 2004. ISBN 3826614178
* Helmut Kraus und Romano Padeste: Digitale Highend-Fotografie. Dpunkt Verlag 2003. ISBN 3898642399
* Jost J. Marchesi: digital Photokollegium. 3 Bände, Verlag Photographie, 2003 ISBN 3933131715 ISBN 3933131723 ISBN 3933131731
* Christoph Prevezanos: Digitalfotografie-Praxisbuch (mit CD-ROM). Franzis 2003. ISBN 3772360173
* Andrea Trinkwalder: Raw-Masse. Höhere Farbtiefe, weniger Fehler: Bessere Bilder dank Rohdaten. In: c't 16/04, S. 152 (atr)
* Wolfgang Krautzer: Digitale Fotopraxis. Leitfaden für Profis und Einsteiger. Report Verlag 2004. ISBN 3901688420
* Josef Scheibel, Robert Scheibel: Fotos digital - Basiswissen aktuell (2. erweiterte Neuauflage). vfv Verlag 2007. ISBN 9783889551788
* Josef Scheibel, Robert Scheibel: Fotos digital - Aufnahmepraxis. vfv Verlag 2006. ISBN 3889551718
* Josef Scheibel, Robert Scheibel: Fotos digital - printen, präsentieren, archivieren. vfv Verlag 2004. ISBN 3889551513


Weitere Quellen




Weblinks
Allgemeines



Software



Analyse digitaler Fotografien
Beitrag Forum: Fotowiki   Geschrieben: Sa, 29. Dec 2007 18:16   Titel: Bildgestaltung

Bildgestaltung



Bildgestaltung ist die Anordnung und Verbindung formaler Elemente in einem Kunstwerk.

Psychologische Grundlagen


Aufmerksamkeit

Die Aufmerksamkeit ist die Fokussierung eines Sinnes (hier des Sehens) auf einen bestimmten Sinneseindruck. Der Bildteil, auf den die Aufmerksamkeit eines Betrachters gelenkt ist, wird weitaus schärfer und brillanter wahrgenommen als der Rest des Blickfeldes. Das liegt sowohl an der Verarbeitung durch das Gehirn als auch am Aufbau des Auges. Die Aufmerksamkeit muss also zugeteilt werden. Der Mensch konzentriert seine Aufmerksamkeit zumnächst auf potentiell interessante Bildelemente.

Darstellungen mit Eigenschaften, die in der realen Welt selten sind oder nicht vorkommen, ziehen die Aufmerksamkeit des Betrachters auf sich (etwa grelle, unnatürliche Farben). Ein weiterer Aspekt ist die Aufmerksamkeitszuwendung zu Bildteilen, die sich deutlich von den meisten anderen unterscheiden. Diese Differenz kann sich in verschieden Arten ausdrücken. Von diesen Aspekten unterscheidet sich die Aufmerksamkeitszuwendung aus emotionellen Gründen erheblich. Hierbei wendet sich der Betrachter Darstellungen zu, zu denen er eine emotionale Beziehung hat. Das gilt am häufigsten für Darstellungen von Menschen oder Gesichtern.

Gestaltungselemente


Bei der Bildgestaltung können verschiedene Gestaltungselemente angewandt werden. Diese können auf die Wirkung des Gesamtbildes einen erheblichen Einfluss haben. Im folgenden sind allgemeine Stilmittel beschrieben.

Farbe

Eine Farbe setzt sich aus drei Komponenten zusammen: Farbton, Sättigung und Helligkeit. Farben und sich daraus ergebende Kontraste wirken meist sehr emotional und direkt auf den Betrachter. In der Analyse der Stilmittel im Bezug auf Farben, kann man zwei Aspekte unterscheiden: Die einzelne Farbe und die Wirkung verschiedenen Farben untereinander.

Farbe an sich

Schon eine einzelne Farbe hat eine bestimmte Wirkung auf den Betracher. Diese beruht auf Assoziationen mit Erfahrungen und kulturellen Farbsinnbildern. Für die rein emotionelle Wirkung sind die Assoziationen aus Erfahrung entscheidend. Beispielsweise werden Gelb und Rot mit Wärme (Feuer, Hauterrötung), Blau dagegen mit Ferne, und Kälte (Wasser, Himmel, Eis) assoziiert. Eine warme Farbe wird meistens etwas emotionaler assoziert und zieht deshalb auch mehr Aufmerksamkeit auf sich.

Die kulturelle Bedeutung der Farben variiert dagegen stark. Während im westlichen Kulturkreis Gelb auch als die Farbe des Neides und der Falschheit steht, hat diese Farbe im Buddhistischen Kulturkreis eine sehr hohe und positive Stellung.

Kontraste

Image





















Harmonischer Farbkontrast

Verschieden Farben bilden Kontraste. Farben können sich, wie erwähnt, in Helligkeit, Farbton und Sättigung unterscheiden. Je stärker sich eine Farbe in einer oder mehrerer dieser Eigenschaften von der anderen unterscheidet, desto stärker der Kontrast. Besonders starke Kontraste können „flimmern“ und ein unangenehmes Gefühl hervorrufen. Das geschieht besonders bei hoher Helligkeit und Sättigung beider Farben, aber stark differierenden Farbtönen. Der Kontrast zwischen Farbtönen wird vom Menschen auch besonders deutlich wahrgenommen, weshalb Farbe und Farbton häufig gleichgesetzt werden.

Harmonien

Zusammenstellungen von Farben bilden Farbharmonien. Ob der Betrachter das Zusammenspiel der Farben als harmonisch empfindet, ist teilweise Subjektiv und von Modeströmungen und Sehgewohnheiten abhängig. Eine häufig angewandte Harmonie besteht aus mehreren ähnlichen Farben, denen eine Akzent- oder Kontrastfarbe gegenübersteht.

Form

Die Form eines Bildelementes in einem Bild ergibt sich durch den (realen) Umriss des Elementes und durch die gedachte dreidimensionale Form, die sich aus den Licht-Schatten-Verhältnissen ergibt. Ebenso wie Farbe werden Formen unbewusst mit bestimmten abstrakten Eigenschaften assoziert. Diese ergeben sich aus unseren Seherfahrungen. Beispielhaft seien hier die häufigen Assoziationen der Grundform des Kreises mit „weiblich“, „weich“ und „emotional“ und denen mit der Form des Quadrates als „männlich“, „bestimmt“ „hart“ und „rational“ genannt.

Die Form eines Objektes ist entscheidend für das Erkennen und Einordnen eines dargestellten Objektes. Dazu reicht bei einfachen Objekten häufig der einfache Umriss aus. Bei komplexeren Formen muss auch die Dreidimensionalität interpretiert werden, um das Objekt als einen bestimmten Gegenstand erkennen zu können.

Linien

Linien bilden sich an Objektkanten durch Farbkontrast oder durch gedankliches Verbinden von Bildelementen. Letztere sind daher subjektiv, dennoch ist das Sehverhalten der meisten Menschen ähnlich. Beispielsweise werden meistens die Bildschwerpunkte oder ähnliche Objekte miteinander in Verbindung gebracht. In der modernen Malerei und Computergrafik sind Linien oft ein wesentliches Bildelement.

Raum

Image








Schematische Darstellung der Zentralperspektive

Da Bildkomposition auf einem zweidimensionalen Medium stattfindet, ist Raum in der Bildgestaltung eine optische Täuschung. Um Raum zu simulieren, gibt es verschiedene Techniken. Die deutlichste ist dabei die Anwendung von Perspektive. Hierbei werden dreidimensionale Objekte auf einer zweidimensionalen Fläche so abgebildet, dass ein räumlicher Eindruck entsteht. In der Bildkomposition wird häufig die Zentralperspektive angewandt, die unserem Seheindruck am nächsten kommt. Farben können die Raumwarnehmung auch beeinflussen. Brillante Farben erscheinen näher, blasse, kalte und helle Farbtöne weiter entfernt. Das liegt vermutlich an unseren Seherfahrungen, da durch den Dunst in der Luft die Farben in der Entfernung verblassen.

Haptik

Obwohl das Empfinden der Haptik dem Tastsinn zugeordnet ist, kann die Haptik einer Oberfläche oft auch durch visuelle Eindrücke eingeschätzt werden. Typische Oberflächenhaptiken zeigen auch ein typisches visuelles Verhalten. So sind matte Oberflächen nur wenig rau, spiegelnde Oberfläche werden als glatt identifiziert, und sehr raue Oberflächen können an ihrem feinen Hell-dunkel-Muster erkannt werden.

Komposition


Die Komposition ist die eigentliche Bildgestaltung. Hierbei werden die formalen Elemente zu einem Kunstwerk zusammengefügt.

Gewichtung der Bildelemente

Das „Gewicht“ eines Bildelementes ist mit der Aufmerksamkeit, die es auf sich zieht, gleichzusetzen. Das Gewicht eines Bildelementes ist somit genauso subjektiv wie die Aufmerksamkeit. Die Verteilung der verschieden gewichteten Bildelemente entscheidet über die Gesamtwirkung des Bildes nach Ruhe oder Spannung. Eine Komposition, die sehr gleichmäßig gestaltet ist, erzeugt meistens einen ruhigen Eindruck.

Komposition der formalen Elemente

Die Art der Bildkomposition ist von den Intentionen des Künstler abhängig. Dazu gehören subjektive Empfindungen und die Schaffung einer gewünschten Bildaussage. Zur Kompositionshilfe gibt es mehrere Prinzipien, die meist harmonische Verhältnisse zwischen Bildelementen herstellen. Dazu gehören der Goldene Schnitt, die Dreieckskomposition und Gestaltungsraster. Sie finden oft im Grafikdesign und Layouts Anwendung. Dabei orientiert sich die Verteilung von Bildelementen an einem (unsichtbarem) Raster. Die Nutzung dieser Mittel ist jedoch eher als Kompositionshilfe und nicht als Garantie für ein gutes Bild zu betrachten. Auch in der Gesammtkomposition ist der Elementare Ausdruck von Ruhe oder Spannung zu beachten: Eine Komposition, die sehr gleichmäßig gestaltet ist, erzeugt meistens einen ruhigen Eindruck. Dementsprechend entsteht Spannung durch weniger gleichmäßige und kontrastreiche Komposition.

Mittel zur Bildgestaltung


Das bildgestalterische Konzept muss in einer Technik gestaltet werden. Die häufigste Unterscheidung verläuft zwischen Fotografie und Malerei. Die Malerei selbst gliedert sich wieder in verschiedene Techniken und Stilrichtungen.

Beim Zeichnen und in der Malerei

Diese beiden Kunstformen ermöglichen eine freiere Komposition als das Fotografieren. Hier sind etwa durch die Wahl der Farb-Qualität (Aquarell, Tempera, Öl oder Kunststoff) oder die (leichte) Dreidimensionalität bei Collagen vielseitige Möglichkeiten der Komposition gegeben. Auch die Malgründe spielen eine Rolle (Papier, Leinwand, Holz, …). Wieder andere Bedingungen ergeben sich bei Radierungen oder Stichen.

In der Fotografie

Generell ist die Gestaltung des Bildes die entscheidende Tätigkeit beim Fotografieren, die zum Teil auch durch besondere Anwendungen der Technik bestimmt wird. Bei einem Portrait zum Beispiel kann mittels der Kameraeinstellung der Vordergrund und/oder der Hintergrund vor dem scharf abzubildenden Objekt unscharf gehalten werden. In der Architekturfotografie sind beispielsweise mit der Balgenkamera Bilder zu gestalten, die mit Kameras ohne deren Möglichkeit der Verschiebung von Film- und Objektivebene nicht darstellbar sind. Beim Fotografieren dient – mit anderen Worten – die Kenntnis der Technik oft der Gestaltung. Dies gilt insbesondere in der Tiefe des aufzunehmenden Objekts/Motivs in Richtung der Objektivachse, also bei der Umsetzung des dreidimensionalen Motivs in ein zweidimensionales Bild (Schärfentiefe).

Konstruktion des Bildes mit der Kamera

Im Bereich der Kameratechnik sind Kenntnisse über die Beschaffenheit der lichtempfindlichen Mediums (Film/Sensor), die Funktionsweise des Fotoapparats und der Belichtungsmessung von besonderer Bedeutung für die Bildgestaltung. Eine exakte Kenntnis der Mechanik (etwa des Kameraverschlusses) ist nicht zwingend erforderlich, erleichtert jedoch das Verständnis.

Für Beleuchtung im Fotostudio oder die Beurteilung der Auswirkungen verschiedener Lichtquellen auf das lichtempfindliche Medium sind Kenntnisse über das Licht erforderlich. Dazu zählen die verschiedenen Farbtemperaturen verschiedener Lichtquellen ebenso, wie die Farbtheorie.

Gestaltung in der Dunkelkammer

Zum Fotografieren gehören auch Grundkenntnisse der Filmentwicklung und zur Dunkelkammer bzw. dem Fotolabor. Für viele Fotografen – besonders im künstlerischen Bereich – ist die Ausarbeitung des Abzugs (vom Dia oder Negativ) beziehungsweise heute des Digitaldrucks von ebenso großer Bedeutung wie das eigentliche Fotografieren.

Durch den Einsatz verschiedener Fotopapiersorten von „weicher“ bis „harter“ Gradation werden die Kontraste des Bildes gesteuert. Dies gilt für die Ausarbeitung von Schwarz-Weiß-Bildern, da bei Farbbildern nur die Wahl zwischen verschiedenen Oberflächen bleibt, jedoch nicht zwischen verschiedenen Gradationen. In der Farbfotografie werden neben den klassischen Vergrößerungen mit möglichst farbneutraler Darstellung auch „Cross-Verfahren“ verwendet. Das bedeutet, es werden Filmtyp und Entwicklungsbad vertauscht, zum Beispiel ein Dia im Negativprozess entwickelt, was zu besonderen Farbverschiebungen führt.

Literatur


* Andreas Feininger: Grosse Fotolehre. Heyne-Verlag, ISBN 3-453-17975-7
* Karen Ostertag: Die Fotokomposition (Creativ Fotografieren 3). München: Laterna magica 1982
* Harald Mante: Das Foto. Bildaufbau und Farbdesign. Verlag Photographie, ISBN 3933131561
* Marlene Schnelle-Schneyder: Sehen und Photographieren. Von der Ästhetik zum Bild Springer Verlag, ISBN-13: 978-3-540-43825-0
* Pina Lewandowsky, Francis Zeischegg Visuelles Gestalten mit dem Computer Rowohlt, ISBN 3499612135

Weblink


* Darstellung von Andreas Hurni

Dieser Artikel basiert auf dem Artikel Bildgestaltung aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.




Kategorien:
Beitrag Forum: Fotowiki   Geschrieben: Sa, 29. Dec 2007 17:49   Titel: Blendenzahl

Blendenzahl:

Die Blendenzahl ist der Quotient aus Brennweite und Objektivdurchmesser. D.h. bei einem f=80mm, bei dem Blende 16 eingestellt ist, beträgt die Öffnung der Blende 5mm. Je höher die Blendenzahl, desto kleiner die Öffnung.

Blendenzahl zur Bestimmung der Objektivqualität:

Auf den Objektiven steht oft folgende Angabe: 1:x, dabei bedeutet x = Blendenzahl bei voll geöffneter Blende. Z.B. 1:1,8 bedeutet bei einer Festbrennweite, dass die maximale Blendenöffnung 1,8 Blendenzahlen beträgt. Bei 1:1,8-3,5 f=70-210 bedeutet dies: Bei einer Brennweite von 70mm beträgt die max. Blendenöffnung 1,8 Blendenzahlen und bei 210mm Brennweite beträgt die max. Blendenöffnung 3,5 Blendenzahlen.
Da nun die Blendenzahl nur durch die Brennweite und dem Objektivdurchmesser bestimmt wird, können verschiedene Objektive in Bezug auf ihre Lichtstärke gut miteinander verglichen werden, voraus gesetzt sie besitzen die gleichen Brennweiten. Je kleiner die Zahl x bei 1:x ist, desto besser die Lichtstärke.

Die Blendenzahl hat Einfluss auf die Belichtungszeit, der Filmwahl und der Tiefenschärfe. Hierzu folgende Ãquivalenz:
Blende 8 bei 1/125 ist äquivalent zu Blende 16 bei 1/250 Belichtungszeit.
1:1,8 ist besser als 1:3,5 im Bezug auf die Stammdaten des Objektives (Lichtstärke)
f=100mm Blende 8 hat die gleiche Lichtstärke wie f=50mm Blende 16 bei gleichen Objektivdurchmesser und gleicher Güte, da folgende "Faustformel" gilt: Doppelte Brennweite ist gleich halbe Lichtstärke. Warum? Weil bei doppelter Brennweite eine kleinere Objektfläche (und damit eine geringere Lichtmenge) auf den Film projiziert wird. Also ein kleinerer Ausschnitt von einem Objekt wird auf eine stets konstant große Bildfläche projiziert und dadurch die Lichtmenge quasi "verdünnt". Näheres siehe in der Fotowiki.
Große Blendenzahl ist gleich große Tiefenschärfe....siehe dazu beim entsprechenden Artikel.



Quelle: Meine große Fotoschule ISBN: 3-88472-387-1
Beitrag Forum: Fotowiki   Geschrieben: Sa, 29. Dec 2007 17:47   Titel: Astrofotografie

Astrofotografie
aus Wikipedia, der freien Enzyklopädie



Die Astrofotografie ist ein Spezialgebiet der Fotografie, die Himmelskörper des sichtbaren Universums abbildet und dauerhaft auf verschiedenen Medien (fotografisch oder elektronisch) speichert.

Mit ihrer Hilfe kann man insbesondere Objekte darstellen, die zu lichtschwach für visuelle Beobachtung sind. Die Gegenstände der Astrofotografie reichen von den Körpern des Sonnensystems über Objekte in unserer Milchstraße bis zu Galaxien und Galaxienhaufen.

Astrografen ermöglichen es, auf Fotoplatten große Felder des Sternhimmels zu erfassen und insbesondere die Helligkeiten vieler Sterne exakt auszumessen (für anspruchsvolle Positionsbestimmungen ist Astrofotografie nicht geeignet). Ãœber eines der weltweit größten Fotoplatten-Archive verfügt die von Cuno Hoffmeister gegründete Sternwarte in Sonneberg. Es umfasst über 277.000 Himmelsaufnahmen, die das astronomische Geschehen im Bereich der nördlichen Milchstraße über nahezu 70 Jahre dokumentieren und auf denen bisher mehr als 11.000 veränderliche Sterne entdeckt wurden.

1948 wurde auf dem Mount Palomar die 48-Zoll-Schmidt-Kamera (heute Oschin Telescope genannt) in Betrieb genommen. Mit diesem Gerät wurde der POSS durchgeführt, die wohl wichtigste Himmelsdurchmusterung der zweiten Hälfte des 20. Jahrhunderts.

Das Archiv des Harvard-College-Observatoriums umfasst über 500.000 astrofotografische Platten aus der Zeit von 1885 bis 1989. 1965 begann dort mit dem Harvard Sky Patrol Program ein Vorhaben, für das Sonneberg das Vorbild darstellte: eine möglichst lückenlose Dokumentation der Veränderungen am Sternhimmel. Für diesen Zweck wurden sechs eigens hierfür konstruierte Astrografen (nach dem Sponsor „Damon-Cameras“ genannt) eingesetzt, die auf 20x25-cm-Platten 30x40° Gesichtsfeld in drei definierten Farben erfassten. Das Ziel war, über Jahrzehnte hinweg einheitliche und damit vergleichbare Aufnahmen zu gewinnen und zu archivieren. Dieses Programm wurde im Jahr 1989 abgebrochen.

Die Astrofotografie stellt hohe Anforderungen an die Optik sowie (angesichts der im Allgemeinen langen Belichtungszeiten) an den Teleskopantrieb. Werden diese erfüllt – heute meist mit elektronischer Steuerung – so lassen sich lang belichtete Aufnahmen extrem lichtschwacher Objekte, wie ferne Galaxien oder feine Gasnebel, gewinnen. fast alle dieser Objekte wären ohne die Astrofotografie unsichtbar, da sie zu schwach leuchten um von unserem Auge wahrgenommen zu werden.

Geschichte


Bereits Monate vor der Veröffentlichung seines fotografischen Verfahrens (1838) soll Louis Daguerre eine Aufnahme vom Mond gemacht haben – dies wäre die erste Astrofotografie der Welt. 1840 fotografierte John William Draper den Mond, 1843 nahm er das erste Spektrogramm der Sonne auf. Im April 1845 gelang Leon Foucault und Armand Fizeau das erste Sonnenfoto; auf ihrer Daguerreotypie mit 12 cm Durchmesser waren Sonnenflecken klar erkennbar. 1850 wurde am Harvard College Observatory von John Adams Whipple erstmals ein Fixstern – die Vega – aufgenommen; die Mechanik des verwendeten Teleskops war jedoch für die Belichtungszeit von 100 Sekunden nicht präzise genug. Nach Verbesserungen gelang 1857 eine gute Aufnahme des Doppelsternsystems Alkor und Mizar – nunmehr mittels Kollodiumplatte – die sich zu einer präzisen Bestimmung der relativen Positionen nutzen ließ. Anlässlich der Sonnenfinsternis im Juli 1860 konnte mittels fotografischer Aufnahmen die Frage geklärt werden, ob Protuberanzen tatsächlich Sonnenausbrüche darstellen. 1872 konnte Henry Draper das erste Spektrum eines Fixsterns – wiederum war es die Vega – aufzeichnen. Pierre Janssen machte 1874 Fotos vom Venus-Durchgang; auf seinen Aufnahmen war erstmals die Granulation der Sonnenoberfläche zu erkennen. Am 22. Dezember 1891 fand Max Wolf als erster Astronom einen Kleinplaneten mit fotografischen Methoden.

1880 gelang Henry Draper erstmals eine Aufnahme (Bromsilber) von einem Gasnebel in der Milchstraße: es war der Orionnebel. 1884 folgte mit dem Andromedanebel (A. A. Common) die erste Galaxie; 15 Jahre später nahm Julius Scheiner in Potsdam das erste Spektrum dieses Objektes auf.

Mit der ständigen Verbesserung des Aufnahmematerials gewann der Gedanke an Boden, Himmelsatlanten mittels Astrofotografie zu erstellen. Damit würde man die Grenzhelligkeit, die etwa bei der Bonner Durchmusterung noch 9 bis 9,5 Größenklassen betragen hatte) erheblich steigern können. Das umfangreichste dieser Vorhaben war die Carte du Ciel unter der Führung des Observatoriums von Paris, das um 1880 begonnen, aber nicht zu Ende geführt wurde.

1905 nahm Edward Emerson Barnard auf dem Mount Wilson in Kalifornien (noch vor der Fertigstellung des 60-Zoll-Spiegels) 480 Fotos von Milchstraßenregionen auf, die unser Verständnis vom Aufbau der Milchstraße revolutionierten. Die Aufnahmen, die knapp 20 Jahre später mit dem 100-Zoll-Teleskop von den Außenbezirken des Andromedanebels gemacht wurden, revolutionierten dann unsere Vorstellung von der Struktur des Kosmos.

Durch die Verfügbarkeit immer größerer CCDs haben Fotoplatten (auch weil ihre Produktion ausläuft) in der Astronomie seit dem letzten Jahrzehnt des 20. Jahrhunderts keine praktische Bedeutung mehr.

Amateurastrofotografie


Image Der Mond, zusammengesetzt aus 43 Einzelaufnahmen von einem Amateurastronomen

In der Amateurastronomie werden neben analogen Spiegelreflexkameras auch digitale Kameras (meist auf CMOS-Basis), CCD-Kameras, spezielle Videokameras und häufig auch Webcams eingesetzt.

Astrofotografie ist bereits mit einer einfachen, ruhenden Kamera möglich. Damit bei derartigen Aufnahmen keine Strichspuraufnahmen entstehen, gilt – bei mittlerer Deklination – als Faustformel für die maximale Belichtungszeit (t) in Sekunden:

t = 420 / Objektivbrennweite

Weblinks


Wikibooks
Wikibooks: Astrofotografie – Lern- und Lehrmaterialien
Beitrag Forum: Partybilder   Geschrieben: So, 11. Nov 2007 16:51   Titel: Tipps zur Konzertfotografie

Konzertfotografie



Brauchbare Ergebnisse sind von enorm vielen Faktoren abhängig. Da sind die meist schlechten Lichtverhältnisse, eine Luft zum Schneiden - teilweise Temperaturen, die einer Sauna gleichkommen - Kabel, die ein Meer an Stolperfallen bereithalten, keinen ausreichenden Platz, um Filmmaterial, Objektiv etc. zu wechseln, keine Blitzerlaubnis (finde ich jedoch nicht unbedingt tragisch - mehr dazu s.u.), eine Lautstärke (und sei es auch die Lieblingsband), die einem fast das Trommelfell platzen läßt - wenn einem nur der sichere Standpunkt an den Boxen bleibt - kreischende und schupsende Fans, eine Security, die nur darauf wartet, einem den Job zu vermasseln und so weiter und so fort...

Selbst bei Open-Air-Veranstaltungen treffen viele der vorgenannten Faktoren zu, auch wenn die Lichtverhältnisse wesentlich besser sind. Im Sommer hat man allenfalls - je nach dem - mit den Schweißperlen auf der Stirn zu kämpfen. Bei einer der Open-Air-Veranstaltung bin ich z.B. zwei Tage lang jeweils über 10 Stunden bei ca. 35°C auf dem Platz, mit der kompl. Fotosausrüstung um den Hals hängend, herumgelaufen bzw. habe an der Bühne gestanden. Trotz der enormen Anstrengung hat es sehr, sehr viel Spaß gemacht und das ist mit das Wichtigste.



Die Musiker

Dann kommen wir zu den Musikern selbst: entweder schätzen sie die Arbeit eines Fotografen, wie die eigene oder sie sind über alles erhaben und betrachten sie nur als notwendiges Nebenher. Man hat entweder nach einer bestimmten Vorgabe der Musiker etc. das entsprechende Bildmaterial abzuliefern oder aber, sie lassen einem freie Hand. Entweder zählen die Fotografen nur zu den Störenfrieden oder aber: sind sie nicht zur Stelle, hält man sie für unentbehrlich. Und zum guten Schluß folgt dann noch die Diskussion über die (Vervielfältigungs-)Rechte am Bild ...., sofern diese nicht vorher abgeklärt wurden. Das Letztere ist nicht der Fall, wenn man aus eigenem Ermessen fotografiert und nicht von den Musikern beauftragt wurde, sondern lediglich die Genehmigung hat, das Konzert mit der Kamera zu begleiten. Geht es jedoch darum, Fotos für ein CD-Cover o.ä. abzuliefern, muß man sich mit dem Thema "Urheberrecht" schon ernsthaft auseinandersetzen. Sollte etwa die Band eines der Fotos für so unschlagbar gut befinden, daß es tausendfach als CD-Cover verwendet wird, muß man schon sehr genau aufpassen, daß man als Fotograf nicht leer ausgeht und das Recht auf Namensnennung gewahrt bleibt. Insbesondere den Amateurfotografen wird "gutes Material" schnell aus der Hand genommen und hinterher bleibt nur noch Enttäuschung derselben, wenn diese plötzlich im CD-Shop von den eigenen Fotos ihrer Lieblingsband angelächelt werden - dies nur als Beispiel. Hier spricht die Tatsache für sich, daß "gutes Material" wohl sonst kaum an dieser Stelle anzutreffen gewesen wäre. Ebenso unterschätzen leider immer noch eine Menge Musiker, die Nacharbeit des Fotografen. Die Rennerei zum Labor, das oft stundenlange Vorsortieren, anschließende Treffen und Bilddiskussionen mit den Musikern, die Auswahl bestimmter Bilder, weitere Vervielfältigungen, Vergrößerungen, Fahrtkosten und ... und .... und - um hier nur einige Beispiele zu nennen.



Praxis

Grundsätzlich darf bei einem Live-Konzert an Filmmaterial keineswegs gespart werden, bei aller Technik und allem Können gehört hier ebenso eine gute Portion Glück dazu, die Musiker im richtigen Augenblick unter den vorgenannten Bedingungen mit der Kamera "einzufangen". Alles in allem ist der Bereich Konzertfotografie trotzdem eine besondere Herausforderung. Ich versuche von vornherein, dieses musikalische Erlebnis mit der Spannung des Fotografierens zu verbinden. Wie schwierig das ist, dürfte inzwischen klar sein. Daher steht für mich der Musiker als Mensch im Vordergrund, der in der Lage ist, eigene (oder auch nicht ;-) Klangwelten zu präsentieren. Dazu ist es meist erforderlich, diese(n) bereits vor dem Konzert kennenzuleren und sich mit ihm gemeinsam über die Fotografie auseinanderzusetzen. Das gelingt natürlich nicht immer, denn es ist bekannter Weise sehr schwierig, hier einen Zeh zwischen verschlossende Türen zu setzen. Mit viel Geschick und Einfühlungsvermögen muß den Musikern oder den Verantwortlichen klar gemacht werden, daß es nicht in erster Linie um die Herstellung eines Massenproduktes geht, sondern um die Dokumentation kleiner und großer, mitunter einmaliger, Erlebnisse. Wenn dann von vornherein Sympathien zwischen Musiker und Fotograf entstehen, ist das die wichtigste Basis für gute Ergebnisse. Denn man geht dann, trotz der harten Bedingungen vor Ort, ganz anders an diese fotografische Aufgabe heran. Und der Fotograf wird nicht als "notwendiges übel", sondern als Teil des Ganzen betrachtet.

Ausrüstung

Von der Ausrüstung her, sollte man "sparsam" an die Sache herangehen: zwei Kameras umhängen, um sich den Objektivwechsel unter den vorherrschenden Bedingungen möglichst zu ersparen und ggfs. eine Fotoweste, um das (reichliche) Filmmaterial in unmittelbar greifbarer Nähe zu haben. Es sollten möglichst lichtstarke Objektive verwendet werden. Das 50 mm ist eine gute Alternative zum Weitwinkel, um die kompl. Bühne aufnehmen zu können oder auch nur einzelne Ausschnitte, wenn man nahe genung an das Geschehen herankommt. Ebenso ein Zoom-Objektiv mit entsprechend längerer Brennweite, wenn einem der Platz auf oder unmittalbar an der Bühne verwehrt bleibt und, um die Musiker auf dem hinteren Teil der Bühne fotografieren zu können. In der "Available Light Photographie" ist die Wahl des richtigen Filmmaterials ein wichtiger Faktor. Ich verwende hauptsächlich Material mit Iso 400/27° und ggfs. entsprechend auf Iso 1000/31° belichtet und entsprechend gepusht werden kann. Da ich vorzugsweise viel im s/w-Bereich fotografiere, habe ich auch sehr gute Ergebnisse mit Iso 3200/36° erzielt, wenn man die grobe Körnung geschickt einsetzt. Speziell diese Aufnahmen stießen auch auf Gegenliebe bei den Musikern. Entscheidend ist dabei natürlich auch, daß ich bei Live-Konzerten sehr gerne experimentell fotografiere. Bewegungsunschärfen sind zu dem ein interessantes Stilmittel und man sollte sie daher nicht scheuen, sondern ruhig in Kauf nehmen. Auf den Einsatz eines Blitzgerätes sollte möglichst verzichtet werden. Es stört meist nicht nur die Musiker, sondern auch die Konzertbesucher. Zudem machen gerade die schwierigen Lichtverhältnisse den Reiz an der Konzert- und Bühnenfotografie aus und die Stimmung läßt sich intensiver "einfangen". Inzwischen hat die digitale Fotografie natürlich in vielerlei Hinsicht der analogen Fotografie den Rang streitig gemacht. Doch auch hier gilt: eine ruhige Hand, ein gutes Auge und das schnelle Erfassen der Bühnensituation sind die Basis für gute Konzertfotos.

Bildgestaltung

Interessant und ein wichtiger Punkt ist zudem auch der gewählte Ausschnitt. Nicht immer müssen es die Musiker selbst sein, die den bildwichtigsten Teil darstellen. Die Hände des Gitarristen, das Gesicht eines Jazz-Musikers in seiner absolut vertieften Mimik, die fliegenden Sticks des Drummers oder nur der Teil eines Instrumentes ... können faszinieren und erweitern die Bildvielfalt der Konzertfotografie erheblich. Alles in allem gibt es kein Patentrezept in Sachen Konzertfotografie. Lediglich die Erfahrung und der Mut zum Ausprobieren führen einen Schritt für Schritt an diese Aufgaben heran. Das hier Geschriebene beruht lediglich auf meinen eigenen Erfahrungen und diese zu erweitern, ist für mich immer wieder eine Herausforderung.

Text & Fotos (c) by Alex We Hillgemann
Beitrag Forum: Praktica-Forum   Geschrieben: Di, 06. Nov 2007 19:52   Titel: Praktica-Objektive Für Digitale Spiegelreflexkameras

Wer sich über die Jahre eine tolle Praktica-Sammlung angeschafft hat und nun trotz seines dadurch bewiesenen guten Geschmakes auf die digitale Fotografie wechseln möchte, muss für neue Systeme (Objektive, Blitzgerät u.a. Zubehör) tief in die Geldbörse greifen. Um nicht alle Objektive dadurch ein zweites mal zu erwerben sollte man sich lieber die Frage stellen:

Gibt es digitale Spiegelreflex Bodys die kompatibel zu Praktica Objektiven sind???

Für die M42 Objektive gibt es für fast alle Kamerasysteme Adapter. Bei Pentax braucht man einen Adapter, der nicht aufträgt (gibts Original von Pentax). Adapter kosten für alle Systeme circa 20 bis 30 Euro und werden meist von Fremdherstellern wie Hama oder Kood gefertigt.
Schwieriger wird es jedoch bei den Bajonett-Objektivern der Praktica B Serie. Der Grund dafür liegt darin, daß diese Objektive relativ wenig verbreitet waren. Bei Nikon verliert man die Unendlich-Einstellung. Grund: Der Abstand zum Sensor ("Auflagemaß") ist zu groß! Also sind die Objektive nur für Nahaufnahmen zu gebrauchen. Gleiches gilt für das Minolta-Bajonett (jetzt in Sony-DSLRS).
Es gilt bei der Verwendung von älteren, adaptierten Objektiven, daß zur Belichtungsmessung die Blende manuell geschlossen werden muss. Das ist aber bei den alten Objektiven zum Glück kinderleicht. Es kann vorkommen, daß man die Belichtung etwas nach unten oder oben korrigieren muss. Je nach verwendetem Objektiv an der Praktika (Zeiss, Pentacon)
könnte es u.U. noch Probleme mit dem Spiegelanschlag geben.


Bei Nutzung von adaptierten Objektiven ist zu beachten, daß sich die effektive Brennweite verlängert.

  • Pentax - mal 1,5
  • Canon APS-C - mal 1,6
  • Nikon DX - mal 1,5
  • Olympus - mal 2 (wie auch bei den Leica 4/3-Pendants)
  • Sony (Konica Minolta) - mal 1,5

Wenn man KB-DSLRs einsetzt wie die Canon 5D oder die 1Ds, gibt es natürlich keine scheinbare Brennweitenverlängerung. Jedoch beträgt bei den 1D-Modellen die Verlängerung noch 1,3fach.
Bei Nikon im FX Format (D3) wird es ebenfalls keine Brennweitenverlängerung geben , aber dennoch den Nachteil keines unendlichen Fokus.

Beste Grüße,

Hannes
Beitrag Forum: Astrofotografie   Geschrieben: So, 07. Oct 2007 16:22   Titel: Scheinermethode

Die Scheiner-Methode

(C)Bernd Nies,

19. Februar 2000


Mittels der Scheiner1-Methode kann eine äquatoriale Montierung (z. B. deutsche Montierung
oder Gabelmontierung) ohne Polsucherfernrohr mit etwas Ãœbung innerhalb einer halben
Stunde sehr genau auf den Himmelsnordpol ausgerichtet werden. Eine direkte Sicht
auf den Polarstern ist dabei nicht nötig.

1. Vorbereitungen










Abbildung 1: Die verschiedenen Achsen
und Winkel einer äquatorialen Montierung
deutscher Bauart.


Das Fernrohr muss als erstes so gut wie möglichvon Hand aufgestellt werden. Es reicht, wenn kurz
mit der Wasserwaage überprüft wird, ob die Montierung
gerade steht, und über die Stundenachse
(auch Pol- oder Rektaszensions-Achse genannt)
grob der Polarstern angepeilt wird. Ist der Polarstern
nicht sichtbar, so kann die Lage der Stundenachse
mit einem Kompass und einem Neigungsmesser
oder einer eingravierten Winkelskala korrigiert
werden. Eine Abweichung von einigen wenigen
Grad gegenüber der exakten Lage ist tolerierbar
und genügt bereits für die meisten visuellen
Zwecke.
Ein beleuchtetes Fadenkreuzokular wird in den
Okularauszug des Fernrohrs gesteckt. Besitzen Sie einen Refraktor oder ein Cassegrain, so
benutzen Sie kein Zenitprisma. Dies erleichtert etwas die Orientierung. Das Fadenkreuzokular
wird am besten parallel zu den beiden Achsen ausgerichtet, d. h. ein zentrierter
Fixstern läuft beim hin- und herbewegen des Fernrohrs mittels den Feintrieben parallel
zu einem Faden aus dem Bild. Besitzen Sie ein unbeleuchtetes Fadenkreuzokular, so kann
das Bild mit einer schwachen Taschenlampe an der Objektivöffnung
des Fernohrs etwas
aufgehellt werden.


1Christoph Scheiner, *1575, y1650, dt. Astronom, führte die äquatoriale Fernrohr-Montierung ein







Abbildung 2: Azimutwinkel-Abweichung der Stundenachse. Das Sudende der Montierung zeigt zu stark
Osten. Ein Stern im Süden läuft in Nordrichtung aus dem Fadenkreuzokular. Zur Korrektur muss die
Montierung in Azimutrichtung (im Uhrzeigersinn) gedreht werden.


2. Korrektur des Azimutwinkels

Man wählt einen geeigneten Stern im Suden, der sich maximal +/-5° vom Himmelsäquator
und maximal +/-1.5 h vom Meridian2 entfernt befindet. Das Fadenkreuz wird nun wie
oben beschrieben ausgerichtet, der Nachführmotor bleibt eingeschaltet. Die ungenaue Ausrichtung
der Montierung führt dazu, dass der Leitstern senkrecht zur Nachführrichtung
herausläuft { also nach Norden oder Süden}.
Azimut-Regel: Muss das Fernrohr in der Deklinationsachse nach Norden gerückt werden,
um den Leitstern wieder im Fadenkreuz zu zentrieren, so zeigt das Südende der
Stundenachse zu stark nach Osten (siehe Abbildung 2). Die Montierung muss also
im Uhrzeigersinn werden.

Wandert der Stern in die andere Richtung aus dem Fadenkreuz heraus (nach Norden),
so muss der Azimutwinkel dementsprechend in die andere Richtung korrigiert werden.
Gleiches gilt auch bei den folgenden Prozeduren für die Korrektur des Polhöhenwinkels.
Die beste Vorgehensweise ist, erst eine grobe Winkeländerung der Azimutachse vorzunehmen,
damit man bewusst etwas über das Ziel hinausschiesst. So kann man sich beim
nächsten Versuch von der anderen Seite her an die richtige Lage iterativ herantasten. Nach
jedem Schritt ein paar Minuten abwarten, in welche Richtung der Stern aus dem Bild läuft
und entsprechend korrigieren. Diesen Vorgang solange wiederholen, bis der der Stern nicht
mehr senkrecht zur Nachführrichtung aus dem Bild läuft, sondern nur noch entlang dieser.
Für die Ausrichtung auf dem Feld zur Fotogra e reicht es meist, wenn der Stern etwa zehn
Minuten mit fast unmerklicher Abweichung Bildmitte bleibt.


[sup]2[/sup]Der Meridian ist die gedachte Verbindungslinie vom geographischen Pol durch den Beobachtungsort.








Abbildung 3: Polhöhenwinkel-Abweichung der Stundenachse. Der Winkel ist zu steil. Ein Stern im Osten
läuft in Nordrichtung aus dem Fadenkreuzokular. Zur Korrektur muss der Polhöhenwinkel verringert werden.


3. Korrektur des Polhöhenwinkels

Hier wird ein Stern über dem östlichen Horizont maximal +/-5° vom Himmelsäquator entfernt
gewählt. Wegen der Refraktion3 soll er jedoch nicht zu knapp über dem Horizont
liegen, aber auch nicht höher als 20° stehen.
Polhöhen-Regel (Osthorizont): Muss das Fernrohr in der Deklinationsachse nach Norden
gerückt werden, um den Leitstern wieder ins Fadenkreuz zu bringen, so ist der
Polhöhenwinkel zu steil (vergleiche Abbildung 3).

Auch hier soll das Fadenkreuz zuerst ausgerichtet werden. Das zuvor beschriebene
iterative Vorgehen endet hier ebenfalls Anwendung. Ist die Sicht auf den Osthorizont versperrt, so benutzen wir die Analogie für den Westhorizont:
Polhöhen-Regel (Westhorizont): Muss das Fernrohr in der Deklinationsachse nach
Norden gerückt werden, um den Leitstern wieder ins Fadenkreuz zu bringen, so ist
der Polhöhenwinkel zu flach.

Soll die Montierung für einen Sternwartenbetrieb dauerhaft und genau ausgerichtet
werden, so empfehlt sich eine iterative Wiederholung der Korrektur für den Azimut- und
für den Polhöhenwinkel bis nur noch jene Abweichung messbar ist, welche durch den
Nachführmotor verursacht wird (z. B. Gangungenauigkeit, periodischer Fehler).


3Lichtbrechung in der Erdatmosphäre, zum Horizont hin zunehmend, bewirkt in der Nähe des Horizonts
eine Hebung des Sternbildes um etwa ein halbes Grad


4. Scheinern\ auf der Südhemisphäre

Die zuvor beschriebenen Korrekturen gelten für die nördliche Hemisphäre. Für die südliche
Hemisphäre verhält sich das Prozedere analog. Es sind lediglich folgende sprachliche
Modifikationen vorzunehmen:
Korrektur des Azimutwinkels: Abbildung 2 muss horizontal gespiegelt werden, da
die Sterne von rechts nach links über den nördlichen Horizont wandern. Norden mit
Süden und Uhrzeigersinn mit Gegenurzeigersinn vertauschen.
Korrektur des Polhöhenwinkels: Abbildung 3 horizontal spiegeln und Norden mit
Süden vertauschen.
Statt Uhrzeigersinn oder Gegenurzeigersinn lässt sich auch allgemein in Richtung der
Sternbewegung formulieren, und statt Norden oder Süden kann auch in Richtung des Pols
verwendet werden. Eine derartig allgemein formulierte Anleitung wäre jedoch weniger klar
verständlich.

Literatur


[1] Rolf Riekher: Fernrohre und ihre Meister, Verlag Technik GmbH Berlin, ISBN 3-341-
00791-1
[2] Markus Hägie: Die Ausrichtung des Teleskops nach der Methode von Scheiner, astro
sapiens 3/92, Seite 74

Weblinks

Astroinfo.org
 
Seite 1 von 2 Gehe zu Seite 1, 2  Weiter
Alle Zeiten sind UTC + 1 Stunde [Sommerzeit aktiviert]