Galerie   Spiele   Spenden   Startseite    Forum    Wiki    Suchen    FAQ    Registrieren    Login
Die Suche hat 21 Beiträge gefunden.
Autor Nachricht
Beitrag Forum: Praktica-Forum   Geschrieben: Fr, 07. Jan 2011 12:01   Titel: Re: Fragen Zur Praktica DCZ 5.8

Gerade kam die Antwort:

Zitat:
ein roter Fokusrahmen bedeutet, dass die Kamera keinen Fixpunkt für die Scharfstellung finden konnte.



Evtl. haben Sie die Falsche Einstellung (Szene) oder es ist zu dunkel.



Bitte setzen Sie die Kamera über das Einstellungsmenü (Symbol: Hammer+Schraubenschlüssel) auf die Werkseinstellungen zurück, reinigen Sie das Objektiv mit einem weichen fusselfreien Tuch und testen Sie danach erneut. Oftmals hilft schon die Änderung der Messungs-Art im Kameramenü oder eine leichte Positionsänderung oder ein kleiner Zoomeinsatz um einen Fokussierungspunkt zu bekommen.



Anbei übersende ich Ihnen die ausführliche Anleitung der DCZ 5.8



Die Anleitung hatte ich zwar schon (und da steht es nicht drin!), ist aber trotzdem nett. Und das zurücksetzen auf die Werkseinstellungen scheint sogar etwas gebracht zu haben.
Beitrag Forum: Praktica-Forum   Geschrieben: Mi, 17. Nov 2010 17:22   Titel: Praktica MTL 5 B Spanner Defekt?

Hallo,
ich habe neulich im Keller eine alte Praktica MTL 5b gefunden, die auch einwandfrei funktioniert hat.

Jetzt hat aber gerade eben mein kleiner Bruder meine Kamera in die Hände bekommen, und er wusste ja auch schon ungefähr wie es geht da er mir oft dabei zuschaut.
Ich hatte aber schon gespannt und er hat einfach mal den Spanner so doll durchgedrückt, dass der jetzt anscheinend irgendwie kaputt ist.
Der Spanner lässt sich jetzt so drehen und spannt eben nicht mehr, aber das Zahnrad unten lässt sich ohne Probleme drehen.
Ich bin nicht wirklich bewandert was solche Kameras angeht und würde gerne wissen, ob und wie sich das reparieren lässt...(von mir) Leider lohnt sich das reparieren von Profis nicht wirklich und ich liebe diese Kamera wirklich sehr weil sie meiner Mutter gehört hat.
Danke für Antworten!
Lia :D
Beitrag Forum: Praktica-Forum   Geschrieben: Fr, 11. Dec 2009 18:11   Titel: Re: Praktica EE2 Defekt???

Hallo DCW,

also an der Batterie liegts nicht, ist ja keine drinn... hehe, kleiner Scherz. Nein, das Spiegelproblem schein rein mechanischer Natur zu sein, da wird irgendwo eine Feder oder ein Hebel klemmen. leider kenn ich mich nicht mit dem Innenleben der EE2 aus.

Fraglich ist jedenfalls, ob sich eine Reperatur für Dich lohnen wird. Zum Hinstellen in die Schrankwand wird die Kamera wohl reichen, super Bilder wirst Du wohl mit einer solch alten Kamera nicht schiessen werden. Da sind eigentlich nur noch die BX20er-Modelle konkurrenzfähig.

Hier mal ein Link zur Pentacon-Werkstatt in Dresden:
http://www.dresdner-kameras.de/files/service2.pdf

Und hier noch ein Link zu einer sehr informativen Seite über Pentacon-Kameras:
dresdner-kameras.de

Bedenke in jedem Falle beim Gedanken an eine Reperatur folgendes:
Zitat: "Die heute nicht mehr uneingeschränkt erhältliche PX 21 Batterie lässt sich Dank der Findigkeit einiger Praktica-Freunde durch moderne Typen substituieren, so dass der weiteren Nutzung dieses Klassikers nicht mangels Energienachschub oder Wartung die Perspektive fehlt."
... soll heissen: Die Originalbatterien laufen auf Quecksilberbasis, und das ist heutzutage verboten. Du bekommst keine Originalbatterien mit der entsprechenden Spannung mehr. Um gängige Batterien mit einer anderen Spannung zu verwenden, muss an der Kamera bissel rumgebastelt werden.....


viele Grüße,

Thyno
Beitrag Forum: Fotowiki   Geschrieben: Fr, 19. Sep 2008 19:55   Titel: Innenfokussierung

Innenfokussierung



Innenfokussierung, abgekürzt IF, ist eine Konstuktionsart von Objektiven, bei der die Entfernungseinstellung nicht durch eine Verschiebung des ganzen Objektivs, sondern nur von einer oder mehreren Linsen innerhalb des Objektivs erfolgt. Die übrigen Linsen, insbesondere die Frontlinse, behalten ihren Abstand von der Bildauffangebene (Film oder Bildsensor) bei, wodurch sich die Baulänge des Objektivs nicht ändert.


Problematik


Gewöhnliche Objektive fokussieren dadurch, dass sich das gesamte Linsenpaket in Richtung ihrer optischen Achse verschiebt. Dies führt beim Einstellen auf nahe Motive zu einer größeren Baulänge und einer damit verbundenen Schwerpunktverlagerung. Hinzu kommt, dass mit dem Verstellen aller Linsen eine große Masse bewegt werden muss, die das Fokussieren verlangsamt. Diese Effekte sind für kurze Brennweite bedeutungslos, bei Teleobjektiven aber beträchtlich und von großem Nachteil. Deswegen werden Kameraobjektive ab etwa 3facher Vergrößerung gegenüber der Normalbrennweite, bei Kleinbild also etwa ab 150 mm, seit den 1970er Jahren zunehmend mit Innenfokussierung gebaut.

Objektive mit Innenfokussierung lassen sich kompakter und leichter bauen, was insbesondere bei langen Brennweiten günstig ist. Auch verlagert sich der Schwerpunkt beim Fokussieren kaum, so dass bei Stativaufnahmen keine Änderung der Stativbelastung und somit kein störendes Kippen der Kamera (durch die Elastizität des Stativs) erfolgt. Von Nachteil kann allerdings sein, daß sich im Allgemeinen die Brennweite mit der Entfernungseinstellung ändert.

Funktionsweise


Bei konventioneller Fokussierung bleiben die Abstände der Linsen voneinander stets gleich. Das Linsenpaket besitzt eine Unendlicheinstellung und lässt sich von dieser ausgehend von der Kamera weg verschieben. Um ein Motiv in gegebener Entfernung scharf abzubilden, ist eine bestimmte Entfernung des Linsenpakets (genauer: der bildseitigen Hauptebene) von der Film- bzw. Sensoerebene einzustellen. Diese Auszug genannte Verschiebung des Objektivs hängt neben der Motiventfernung auch von der Brennweite des Objektivs ab. Sie wird mit zunehmender Brennweite größer.

Wenn man auch die Abstände der Linsen voneinander ändert, wie es bei der Innenfokussierung der Fall ist, verschiebt sich nicht nur die bildseitige Hauptebene, sondern es ändert sich im Allgemeinen auch die Brennweite und damit der einzustellende Abstand der Hauptebene vom Film. Somit gibt es zwei Möglichkeiten, die Scharfeinstellung zu realisieren:

  • Die Hauptebene wird bei gleichbleibender Brennweite nach vorn verschoben.
  • Bei gleichbleibender Position der Hauptebene wird die Brennweite verkleinert.


In der Regel nutzt man beide Effekte gleichzeitig.

Bei der Innenfokussierung werden nur ausgewählte Linsen im hinteren Bereich des Objektivs verschoben. Diese Linsen sind relativ klein und leicht und müssen sich meist nur wenig bewegen, und beeinflussen den Objektiv-Schwerpunkt infolgedessen nur unbedeutend. Auch lassen sie sich sehr schnell verstellen, sowohl mit der Hand, wie auch durch einen Autofokusmotor. Da die vorderen Linsen, insbesondere die Frontlinse, nicht zu den verstellten Linsen gehören, bleibt die Objektiv-Baulänge unverändert. Die verringerte Brennweite und somit Vergrößerung bei Naheinstellung hat in der Praxis keine Bedeutung. Im Gegensatz zum herkömmlichen Verfahren kann sich aber die Verzeichnung des Objektivs mit der Entfernung ändern.

Anstatt ausgewählte Linsen zu verschieben, kann man die Entfernung auch verstellen, indem man Linsen auswechselt. Dies führt zu einer stufenweisen Fokussierung und findet bei Polaroid-Sofortbildkameras Anwendung (siehe Polaroid).

Vorteile der Innenfokussierung


  • Bei der Fokussierung wird weniger Masse bewegt, so dass sie schneller erfolgen kann.
  • Die Gewichtsverlagerung ist viel kleiner, so dass sich die Stativbelastung kaum ändert und sich die Kamera nicht neigt.
  • Die Fassung des Objektivs kann kleiner und leichter konstruiert werden.
  • Das Objektiv ist im Allgemeinen robuster. Wenn das Objektiv einen Schlag auf die Vorderkante abbekommt, wird die Fokussiermechanik dadurch nicht belastet, da sie komplett im Inneren liegt.
  • Die Frontlinse dreht sich nicht (im Gegensatz zur Frontlinsen-/Frontgruppen-Fokussierung vieler Zoomobjektive).

Dadurch können Pol- oder Verlaufsfilter (s. Filter) problemlos benutzt werden. Darum ist auch die Verwendung von tulpenförmigen Streulichtblenden (ugs. Gegenlichtblenden) möglich, welche in den Bildecken eingeschnitten sind, um Vignettierungen zu vermeiden.

Besonderheit: Hinterlinsenfokussierung


Die Hinterlinsenfokussierung (engl. rear focus, RF) ist eine Spielart der Innenfokussierung. Dabei wird die hinterste Linse oder Linsengruppe verschoben.
Beitrag Forum: Praktica-Forum   Geschrieben: Do, 18. Sep 2008 21:39   Titel: Praktica BX 20 Bedienungsanleitung (Handbuch)

Practica BX 20 Bedienungsanleitung - Handbuch



Inhaltsverzeichnis

Einleitung
Technische Merkmale
Bezeichnung der Einzelteile
Vorbereitung zur Aufnahme
Batterie einlegen
Batterie prüfen
Rückwand öffnen
Film einlegen
Rückwand schließen
Aufnahmebereitschaft herstellen
Filmempfindlichkeit einstellen
Aufnahmevorgang
Automatische Belichtungszeiten
Steuerung
Vorwahl der Blendenzahl
Belichtungsautomatik, Anzeige
Auslösen
Messwertspeicherung
Belichtungskorrektur
Teilautomatische Arbeitsweise
Kamerahaltung
Blitzlichtaufnahmen
Objektivwechsel
Bildschärfe einstellen
Schärfentiefenanzeige
Infrarotaufnahmen
Auslöser
Verriegeln des Auslösers
Selbstauslöser
Filmwechsel
Pflege der Kamera




Einleitung


Mit der PRAKTICA BX 20 besitzen Sie eine hochwertige Kleinbildspiegelreflexkamera, die sich durch hohen Bedienungskomfort auszeichnet und die einen großen Spielraum für gestalterische Kreativität bietet.

In einem Bereich von 1/1000 s bis 40 s werden die Belichtungszeiten vollautomatisch gesteuert. Die Mikroelektronik der PRAKTICA BX 20 ermöglicht darüber hinaus das Fotografieren mit festen Belichtungszeiten zwischen 1/1000 s und 1 s sowie beliebig langen Belichtungszeiten mit der B-Einstellung.

Die Innenmessung erfolgt bei offener Blende und somit hellstem Sucherbild durch die elektronische Blendenwertübertragung.

Die PRAKTICA BX 20 ist mit einem System zur Blitzinnenmessung ausgerüstet. Bei Verwendung eines systemkonformen Computerblitzgerätes wird das Blitzlicht von der Kamera gemessen, ausgewertet und für die richtige Belichtung dosiert. Neben Computerblitzgeräten können auch herkömmliche Elektronenblitzgeräte verwendet werden.

Für gezielte Ober- und Unterbelichtung ist die Automatik manuell korrigierbar.

An den Rändern des übersichtlichen und hellen Sucherbildes werden durch Leuchtdioden angezeigt: die zu erwartende Belichtungszeit, Grenzwerte, Arbeitsstufen (Voll- bzw. Teilautomatik), Memofunktion, Belichtungskorrektur sowie Blitzbereitschaft einschließlich Blitz"0.K."Signal bei systemkonformen Computerblitzgeräten.

Am unteren Sucherbildrand sind die vorgewählte Blendenzahl und die Anzeige für den Kameraspannzustand sichtbar.

Die PRAKTICA BX 20 verfügt über einen Winderanschluß und gestattet in bekannter Weise den Anschluss des PRAKTICA-Zubehörs.



Technische Merkmale


Einäugige Spiegelreflexkamera für Bildformat 24 mm x 36 mm, Innenmessung bei Offenblende durch elektronische Blendenwertübertragung

Automatische elektronische Belichtungszeitensteuerung stufenlos von 1 /1000 s bis 40 s Automatik auf Teilautomatik umschaltbar, dabei Festzeiten von 1 /1000 s bis 1 s

Elektronische Blitzinnenmessung und Blitzdosierung bei Verwendung systemkonformer Computerblitzgeräte, Synchronisation (ca. 1 /100 s)

Blitzbereitschaftsanzeige (und Blitz "O.K."-Signal) im Sucherbild

Belichtungszeitenvorinformation im Sucher durch Leuchtdioden

Grenzwertanzeige bei Unter- bzw. Überbelichtung

Eingestellte Blende am unteren Sucherbildrand sichtbar

Information über den Spannzustand der Kamera

Manuelle Korrektur der Belichtung im Bereich von ± 2 Belichtungsstufen und Anzeige der Korrektur durch rote Leuchtdiode im Sucherbild bei±

Meßwertspeicherung und Anzeige dieser Funktion durch grüne Leuchtdiode im Sucherbild be AEL (automatic exposure lock)

Selbstauslöser (ca. 10 s) mit Startknopf und
Doppelfunktion als Abblendhebel zur Schär-
fentiefenkontrolle

Bildeinstellsystem: Fresnellinse mit neuartigem, diagonal angeordneten Tripelmeßkeil, Monoplanrasterring und Mattring

Sucherbildgröße ca. 95% der Bildseiten

PRAKTICA-Bajonett (Anlagemaß 44,4 mm,
Innendurchmesser 48,5 mm)

Anschluß für Motoraufzug

Memohalter an der Kamerarückwand

Batteriekontrolle durch Information im Sucher

Energiequelle: Primär-Batterie 6V (z.B.
PX 28/Mallory)

Silizium-Fotosensor als Lichtempfänger

Meß- und Steuerbereich: 0-17 EV bei
100 ASA und Blende 1,4

Abmessungen (Gehäuse):
141 mmx88 mmx49 mm

Masse (Gehäuse ohne Batterie): 510 g



  1. Filtergewinde
  2. Entriegelungstaste
  3. Auslöser für Selbstauslöser
  4. Spannhebel für Selbstauslöser (Betätigung
    gegen Uhrzeigerrichtung), Abblendhebel zur
    Schärfentiefenkontrolle (Betätigung in Uhrzei
    gerrichtung)
  5. Bildzähler
  6. Spannhebel
  7. Fenster für Blendenwerteinspiegelung
  8. Rlückspukurbel
  9. Rückspulknopf
  10. Einstellring für Filmempfindlichkeit
  11. Entriegelungstaste Filmempfindlichkeit
  12. Speicher- und Batterieprüftaste (Memory-Taste)
  13. Blendeneinstellring
  14. Entfernungseinstellring
  15. Schärfentiefenskala und Infrarotpunkt
  16. Einsetzmarkierung am Objektiv
  17. Trageöse
  18. Rückspulauslöser
  19. Marke für Automatik-Betrieb
  20. Auslöserverriegelung
  21. Betriebsartenwähler für Belichtungszeiten und Automatik
  22. Auslöser mit Anschluß für Drahtauslöser
  23. Steckschuh mit Mittenkontakt
  24. Mittenkontakt
  25. Computerblitz-Koppelstelle
  26. Einstellzeiger für Belichtungskorrektur mit Index
  27. Rückwand
  28. Filmaufwickelspule
  29. Filmtransportrolle
  30. Verschlußlamellen
  31. Patronenraum
  32. Okularfassung mit Zubehörwechselstelle
  33. Steckrahmen (Memohalter)
  34. Deckel für Batterieraum
  35. Stativgewinde
  36. Führungskanal für Motoraufzug
  37. Kupplung für Motorauzug
  38. Arretierung für Motoraufzug
  39. Kontakte für Motoraufzug
  40. Marke (Einsetzhilfe fürBatterieraumdeckel



Batterie einlegen


Zur Stromversorgung des gesamten Elektroniksystems wird eine Energiequelle von 6 Volt benötigt. Das kann eine Alkali-Mangan-, SilberOxid oder Lithiumbatterie sein.

Es lassen sich jedoch auch 4 Knopfzellen (z. B. LR 44) in Batteriehülse (Bestell.﷓Nr. 961 363) verwenden.

Eine frische Batterie reicht bei normalem Gebrauch der Kamera ca. 2 Jahre.

Beim Einlegen Batterieraumdeckel (34) in Pfeilrichtung schieben und herausschwenken. Kontakte im Batterieraum und an der Batterie mit trockenem Tuch säubern. Batterie mit Pluspol gegen den federnden Kontakt drücken (Polaritätskennzeichnung im Batterieraum) und hineinkippen. Deckel mit Pfeil in Richtung der Markierung einsetzen, niederdrücken und einschnappen lassen.

Es ist ratsam, die Kontaktstellen an der Batterie und im Batterieraum Von Zeit zu Zeit nachzusehen und ggf. zu reinigen. Gegen tiefe Temperaturen ist die Batterie empfindlich und sollte in geeigneter Weise geschützt werden.

Batterie bei längerer Nichtbenutzung aus dem Batterieraum der Kamera entfernen.


Batterie prüfen

Verschluß muß gespannt sein. Auslöser (22) und dann Memorytaste (12) drücken. Ist die Leuchtdiodenanzeige gut sichtbar, ist die Batterie in Ordnung. Bei verbrauchter Batterie verlöschen die Leuchtdioden am rechten Sucherbildrand. Bei den Einstellungen "B" und "~" ist keine Batterieprüfung möglich.




Rückwand öffnen




Rückspulknopf (9) bis zum Anschlag nach oben ziehen, so daß sich die Rückwandverriegelung löst. Rückwand vollständig öffnen, dabei springt der Bildzähler (5) selbständig in die Ausgangsstellung zurück.


Film einlegen

Achtung! Vor dem Filmeinlegen sollte der Betriebsartenwähler auf eine kurze Festzeit eingestellt werden, da sich bei der Einstellung Automatik "auto" eine lange Belichtungszeit bilden kann. Bis zum Ende des Verschlußablaufens ist der Spannhebel gesperrt. Keine Gewaltanwendung!

Gegebenenfalls können Sie eine lange Belichtungszeit durch Umstellen von "auto" auf "B" abbrechen. Eine lange Belichtungszeit wird bei Einstellung "auto" auch beim Auslösen ohne eingesetztes Objektiv gebildet.

Filmpatrone in den Patronenraum (31) einlegen. Rückspulknopf (9) wieder vollständig hineindrükken, ggf. dabei drehen. Filmanfang mindestens 1 cm in den Schlitz der Aufwickelspule (28) einführen, den Spannhebel vorsichtig betätigen, bis die Zähne der Filmtransportrolle (29) in die Perforation des Filmes eingreifen.

Spannhebel bis an den Endanschlag bewegen und zurückführen. Kamera durch Druck auf den Auslöseknopf (22) auslösen.

Rückwand schließen

Rückwand in der Mitte der Riegelseite fassen und gegen den Kamerakörper drücken, bis die Verriegelung hörbar einrastet.



Aufnahmebereitschaft herstellen


Der Spannhebel (6) läßt sich etwas ausschwenken, ohne den Aufzugsvorgang bereits einzuleiten. Diese Bereitschaftsstellung erhöht die Griffsicherheit bei schneller Bildfolge. Spannhebel vollständig bis zum Anschlag schwenken, zurückführen und Kamera mit Auslöser (22) auslösen. Vorgang wiederholen und nochmals spannen, bis der automatische Bildzähler (5) die Bildzahl " 1 " anzeigt. Über den Spannzustand der Kamera wird am unteren Sucherbildrand informiert: Blendenzahlbild rot -Kamera ungespannt, Blendenzahlbild farblos -Kamera gespannt Der ordnungsgemäße Filmtransport ist am Mitdrehen des Rückspulknopfes (9) bei Betätigung des Spannhebels (6) kontrollierbar.


Filmempfindlichkeit einstellen



Entriegelungstaste (11) drücken und durch gleichzeitiges Drehen des Einstellringes (10) die auf der Filmpackung angegebene Filmempfindfichkeit (ASA-Wert) gegenüber dem Index auf dem Korrekturwertzeiger (26) einstellen. Als Gedächtnisstütze über die Art des eingelegten Filmes kann die abgetrennte Deckellasche der Filmschachtel in den Steckrahmen (Memohalter, 33) eingeschoben werden.



Automatische Bellichtungszeitensteuerung


Die PRAKTICA BX 20 arbeitet bei AutomatikEinstellung "auto" stufenlos und automatisch im Belichtungszeitenbereich von 1/1000 s bis 40 s. Die elektronische Belichtungszeitensteuerung erfolgt entsprechend den Lichtverhältnissen, der vorgewählten Blendenzahl und der Filmempfindlichkeit. Leuchtdioden im Sucherbildrand informieren über die angesteuerte Belichtungszeit. Bei "OVER" oder "UNDER" weisen sie auf Uberbzw. Unterschreitung des Belichtungszeitenbereiches hin.

Durch die Innenmessung werden die Belichtung beeinflussende Faktoren, wie Brennweite des Objektives, Filter, auszugsverlängerndes Zubehöre, automatisch berücksichtigt.

Werden über Adapter Objektive mit PRAKTICA-Gewindeanschluß M 42X1 verwendet, erfolgt die Lichtmessung automatisch bei Arbeitsblende.


Vorwahl der Blendenzahl



Durch Drehen des Blendenringes (13) die gewünschte Blendenzahl der Marke auf der Objektivfassung gegenüberstellen. Die eingestellte Blendenzahl ist dabei am unteren Rand des Sucherbildes eingespiegelt.

Wird der Hebel (4) in Pfeilrichtung betätigt, schließt sich die Blende entsprechend der eingestellten Blendenzahl und die Schärfäntiefe ist im Sucherbild beurteilbar.


Belichtungsautomatik, Anzeige

Betriebsartenwähler (21) auf Automatik "auto" einstellen. Durch leichten Druck auf den Auslöser (22) wird die Elektronik eingeschaltet. Im Sucherbild kann die von der Automatik ermittelte Belichtungszeit durch Leuchtdioden überwacht und, falls sie nicht motivgerecht erscheint, durch Vorwahl einer anderen Blendenzahl korrigiert werden. Dabei ist jeder Zeitstufe im Bereich von 1/1000 s bis 8 s eine Leuchtdiode zugeordnet; Zwischenwerte der stufenlosen Einstellung werden durch gleichzeitiges Leuchten zweier benachbarter Dioden angezeigt. Belichtungszeiten zwischen 8 s und 40 s signalisiert die Leuchtdiode durch Dauerlicht bei "UNDER", Über- bzw. Unterschreitung der Werte 1/1000 s bzw. 40 s werden durch Blinklicht bei "OVER" bzw. "UNDER" angezeigt. In diesem Fall wird der Verschluß stets mit 1 /1000 s bzw. 40 s gesteuert. Bilden sich Belichtungszeiten von 1/15 s und länger, ist die Verwendung eines Stativs oder einer anderen geeigneten festen Unterlage erforderlich.


Auslösen


Nach Kontrolle der Belichtungszeit im Sucher ist durch Weiterdrücken des Auslösers (22) der Verschluß auszulösen. Beim nachfolgenden Loslassen des Auslösers wird die Elektronik automatisch abgeschaltet.

Das Loslassen des Auslösers während langer Belichtungszeiten hat keinen Einfluß auf den Belichtungsvorgang. In diesem Fall erfolgt das Abschalten der Elektronik nach dem vollständigen Verschlußablauf.

Soll bei einer sehr langen Belichtungszeit der Ablauf vorzeitig abgebrochen werden (z. B. nach irrtümlichem Auslösen), so ist der Betriebsartenwähler (21) kurzzeitig auf "B" zu stellen.


Meßwertspeicherung

Weist das Fotomotiv einen besonders großen Kontrast auf (z.B. dunkel bekleidete Personen imsonnenbeschienenenSchneeoderhellerAufnahm egegenstand vor dunklem Hintergrund), ist der Belichtungswert durch individuelle Messung des wichtigsten Bildelementes aus Nahdistanz zu ermitteln. Der bei der Nahmessung ermittelte Meßwert wird gespeichert, und der Bildausschnitt kann danach verändert werden, ohne daß sich eine andere Belichtung ergibt. Zur Speicherung des Meßwertes die Kamera spannen, den Auslöser (22) leicht drücken (Meßvorgang) und kurzzeitig die Memory-Taste (12) betätigen (Meßwertspeicherung, die Leuchtdiode neben AEL leuchtet).

Danach erfolgt bis zum Auslösen des Verschlusses keine neue Messung mehr; der Verschluß bildet die Belichtungszeit entsprechend dem gespeicherten Wert. Durch Loslassen des Auslösers und somit Ausschalten der Elektronik wird die Meßwertspeicherung wieder gelöscht.


Belichtungskorrektur

Eine weitere Möglichkeit, die Belichtung individuell zu beeinflussen, besteht mit dem Einstellsystem für Belichtungskorrektur (10, 26). Derartige Korrekturen sind bei stärkeren Abweichungen des Objektcharakters vom Normalobjekt, z. B. bei dunklen Motiven vor hellem Hintergrund (+ 1, +2) und bei hellen Motiven vor sehr dunklem Hintergrund (-1, -2), notwendig. Dazu Einstellring für Filmempfindlichkeit (10) anheben und Zeiger (26) zum gewünschten Korrekturwert drehen.

Daß eine Korrektur vorgenommen wurde, wird durch eine Leuchtdiode (±) am linken Sucherbildrand signalisiert. Von der Ausgangsstellung ausgehend wird beim Einstellen auf + 1 bzw. + 2 im Automatikbetrieb die Belichtungszeit um 1 bzw. 2 Belichtungswerte verlängert. Sinngemäß findet eine Verkürzung beim Einstellen auf -1 bzw. -2 statt. Dabei kann die Rastung in halben Stufen vorgenommen werden. An den Grenzen des Filmempfindlichkeitsbereiches 12 ASA und 3200 ASA ist die Korrektur von 2 Stufen ebenfalls möglich. Eine Erweiterung des Belichtungszeitenbereiches über die Werte 1 /1000 s und 40 s hinaus erfolgt durch die Korrektur nicht. Achtung! Nach derartigen Korrekturen Einsteller wieder in die Ausgangsstellung 0-Stellung bringen. Die Leuchtdiode (±) verlischt.


Teilautomatische Arbeitsweise

Wollen Sie mit einer bestimmten Belichtungszeit fotografieren, z.B. bei Reproduktionen, wissenschaftlich-technischen Aufnahmen, so ist die PRAKTICA BX 20 auf Teilautomatik umzuschalten. Es stehen feste Belichtungszeiten abgestuft von 1 s bis 1/1000 s und B für beliebig lange Zeiten zur Verfügung. Mit dem Betriebsartenwähler (21) ist die gewünschte Zeit vorzuwählen, damit ist gleichzeitig die Teilautomatik eingestellt. Wie bei der automatischen Belichtungszeitensteuerung wird durch einen leichten Druck auf den Auslöser die Kameraelektronik eingeschaltet.

Die Belichtungskontrolle erfolgt ebenfalls mit Hilfe der Leuchtdioden im Sucher. Während die zur eingestellten Belichtungszeit zugehörige Leuchtdiode blinkt, zeigt eine andere gleichzeitig die entsprechend den Lichtverhältnissen, der Filmempfindlichkeit und der vorgewählten Blendenzahl notwendige Belichtungszeit durch Dauerlicht an. (Bei Zwischenwerten leuchten zwei benachbarte Leuchtdioden gleichzeitig.) Um den Abgleich herbeizuführen, sind Blendenzahl oder Belichtungszeit so lange zu verändern, bis die Leuchtdiode in Dauerlicht übergeht. Bei der Einstellung "B" erfolgt keine Leuchtdiodenanzeige. Die Festzeiten werden durch die aufgeführten Korrekturmöglichkeiten nicht beeinflußt.


Kamerahaltung



Nebenstehende Abbildung zeigt die StandardKamerahaltung. Kamera ruhig und fest halten und den Ellenbogen am Körper abstützen. So erzielen Sie verwacklungsfreie Aufnahmen.

Blitzlichtaufnahmen

Reicht das vorhandene Licht (z. B. Innenaufnahmen) zum sicheren Fotografieren aus der Hand nicht mehr aus oder soll das Motiv zusätzlich aufgehellt werden, empfiehlt es sich zu blitzen. Es können alle Elektronenblitzgeräte mit bzw. ohne Computerblitzsteuerung und entsprechender Anpassung verwendet werden. Blitzgerät in Steckschuh (23) einschieben, die kabellose elektrische Verbindung ist damit hergestellt.

Für Elektronenblitzgeräte ohne Computersteuerung ist der Betriebsartenwähler (21) auf "~" zu stellen. Die eingestellte Belichtungszeit beträgt dann 1 /100 s.

Wird ein systemkonformes Computerblitzgerät in den Steckschuh eingesetzt und der Betriebsartenwähler (21) auf "auto" gestellt, signalisiert eine Leubhtdiode am Sucherbildrand bei "~" die Blitzbereitschaft des Systems. In diesem Moment verlischt die Automatikanzeige.

Die Blitzbereitschaft wird auch bei Verwendung eines Computerblitzgerätes, wenn der Betriebsartenwähler auf" ~ " steht, angezeigt.

Für die richtige Filmbelichtung sorgt die Blitzinnenmessung in der Kamera, d. h., das reflektierte Blitzlicht wird durch das Kameraobjektiv aufgenommen, von der Kamera ausgewertet, und über die kabellose Steckschuhverbindung erfolgt die Blitzbeeinflussung TTL-Blitzautomatik.

Das Blitz-"0. K. "-Signal, d. h. die Blitzlichtmenge reichte zur richtigen Filmbelichtung aus, ist aus der Blitzbereitschaftsanzeige abzuleiten. Leuchtet die Leuchtdiode "~" unmittelbar nach dem Aufnahmevorgang wieder auf, so ist die Ausleuchtung der soeben durchgeführten Blitzaufnahme in Ordnung, also "O.K.". In abweichenden Grenzfällen ist das "0.K."-Signal am Blitzgerät zu beachten. Die Blitzbereitschaft bleibt erhalten, auch wenn die Memory-Taste gedrückt wurde und die grüne LED bei "AEL"Meßwertspeicherung signalisiert. Eine Belichtungskorrektur, signalisiert durch die rote LED bei (±) wird durch die Blitzautomatik berücksichtigt.

Um bei Blitzbetrieb im Bereich großer Objektleuchtdichten Fehlbelichtungen zu vermeiden, wird empfohlen, sich durch Ausschalten des Computerblitzgerätes zu vergewissern, daß die der Umfeldleuchtdichte entsprechende Belichtungszeit länger als 1/125 s ist. Nähere Angaben zur Blitztechnik entnehmen Sie bitte der Blitzgerätebedienungsanleitung



Objektivwechsel


Entriegelungstaste (2) drücken und gleichzeitig Objektiv gegen den Uhrzeigersinn bis Anschlag drehen. Objektiv aus der Kamera entnehmen. PRAKTICA-Objektiv so einsetzen, daß sich die roten Markierungen (16 und 2) an Objektiv und Kamera gegenüberstehen. Objektiv gegen den Kamerakörper drücken und im Uhrzeigersinn drehen, bis Verriegelungsstift hörbar einrastet.

Mit Hilfe des PRAKTICA-Adapters können alle Original-PRAKTICA-Objektive mit Gewindeanschluß M 42x 1 angeschlossen werden.

Fremdobjektive mit Gewindeanschluß M 42x1 müssen für PRAKTICA-Kameras geeignet und für Arbeitsblendenmessung eingerichtet sein. Die PRAKTICA BX 20 arbeitet auch in Verbindung mit den Gewindeobjektiven automatisch. Lediglich die Lichtmessung erfolgt bei Arbeitsblende.


Bildschärfe einstellen

Das Scharfeinstellen ist mit Tripelmeßkeilsystem, Monoplanrasterring oder Mattring möglich.

1 Tripelmeßkeil

Dieses Keilsystem erlaubt eine sehr hohe Einstellgenauigkeit der Bildschärfe. Die optimale Einstellung ist erreicht, wenn Konturen und Linien einen natürlichen Verlauf haben. Bei Unschärfe sind die Motivkonturen im mittleren Kreissegment verschoben.

2 Monoplanrasterring

Die richtige Bildschärfe ist eingestellt, wenn das Bild innerhalb des Rasterfeldes klar und flimmerfrei sichtbar ist.

3 Mattring

Besonders günstig bei Lupen- und Mikroaufnahmen sowie bei Objektiven mit kleiner relativer Öffnung (Blendenzahl größer als 4). Das Bild muß klar und scharf im Mattring erscheinen.



Schärfentiefenanzeige



Die Grenzen des Schärfentiefenbereiches können für die gewählte Blendenzahl auf der Schärfentiefenskale (15) des Objektives abgelesen werden. Zum Beispiel: Entfernung 3 m, Blendenzahl 8-Schärfentiefe reicht von etwa 2 m bis 5 m.

Infrarotaufnahmen

Infrarotaufnahmen erfordern eine geringfügige Korrektur der Scharfeinstellung. Den beim Scharfeinstellen ermittelten Entfernungswert der Infrarotmarkierung (Hinweispfeil) auf dem Objektiv gegenüberstellen.


Auslöser




Für einfachstes Bedienen sind im Auslöser (22) mehrere Funktionen untergebracht. Bei gespannter Kamera werden durch leichtes Drükken bis zum Druckpunkt die Automatik sowie die LED's für Belichtungszeiten bzw. für Blitzbereitschaft (bei speziellen Blitzgeräten) eingeschaltet. Beim Weiterdrücken erfolgt das Auslösen des Verschlusses.

Verriegeln des Auslösers

Ungewolltes Auslösen bzw. unnötiger Stromverbrauch beim unbeabsichtigten Drücken des Auslösers im gespannten und ungespannten Zustand der Kamera lassen sich durch die Auslöserverriegelung vermeiden.

Hierzu wird die unter dem Betriebsartenwähler angeordnete Auslöserverriegelung (20) in Pfeilrichtung betätigt und damit der Auslöser gesperrt. Die Entriegelung erfolgt sinngemäß in entgegengesetzter Richtung.


Selbstauslöser

Kamera spannen, Spannhebel (4) des Selbstauslösers in Pfeilrichtung 1) bis zum Anschlag schwenken, durch Druck auf den Startknopf (3), entsprechend Pfeil 2), Selbstauslöser auslösen. Vorlaufzeit etwa 10 s. Während der Nachlaufzeit des Vorlaufwerkes Kamera nicht spannen!
Befindet sich ein eingeschalteter Motoraufzug an der Kamera, so können während der Nachlaufphase bei kurzen Belichtungszeiten mehrere Aufnahmen belichtet werden. Wird das nicht gewünscht, so ist der Motoraufzug auszuschalten. Bei Automatikbetrieb ist, um Fehlmessungen zu vermeiden, das Okular mit der Okularschutzkappe abzudecken.



Filmwechsel


Der Bildzähler (5) zeigt die bereits belichteten Bilder eines Filmes an. Ist die mit dem jeweils eingelegten Film erreichbare Anzahl von Bildern belichtet (Rotmarkierung bei 20 bzw. 36), Filmwechsel vornehmen.

Rückspulauslöser (18) bis zum Einrasten drükken, Rückspulkurbel (8) ausklappen und in Pfeilrichtung drehen, bis erhöhter Widerstand und anschließende Leichtgängigkeit das Ende des Rückspulvorganges signalisieren Rückspulknopf (9) bis zum Anschlag nach oben ziehen. Rückwand ist entriegelt und springt auf. Filmpatrone kann entnommen werden. Filmwechsel nicht in voller Sonne vornehmen.

Achtung!

Sind mehr Aufnahmen, als auf der Filmpackung angegeben, belichtet worden, kann der Spannhebel möglicherweise nicht voll geschwenktwerden.

Keine Gewaltanwendung!

Film zurückspulen und Spannhebel bis zum Anschlag schwenken.



Pflege der Kamera


  • Kamera vor Stoß, Schlag, Staub und Feuchtigkeit schützen.

  • Patronen﷓ und Spulenraum, Filmbahn und Rückwand von Zeit zu Zeit mit weichem Pinsel säubern.

  • Keine organischen Lösungsmittel wie z. B. Spiritus oder Lackverdünner zum Reinigen der Kamera verwenden.

  • Einwirkung aggressiver Dämpfe auf Kamera und Objektiv vermeiden.

  • Fingerabdrücke auf Linsenflächen von Objektiv und Okular mit Linsenreinigungspapier entfernen.

  • Spiegel, Bildfeldlinse und Verschlußlamellen nicht mit den Fingern berühren. Diese Verunreinigungen können nur von einer ServiceWerkstatt entfernt werden.

  • Zum Beseitigen von Staub wird ein Optikpinsel oder ein Blaseball empfohlen.

  • Kameras niemals längere Zeit sehr hohen oder tiefen Temperaturen aussetzen. Vermeiden Sie z. B. bei Sonneneinstrahlung die Lagerung der Kamera auf der Hutablage eines Kraftfahrzeuges.

  • Vor extremer Kälte ist die Kamera in geeigneter Weise zu schützen.

  • Beim Benutzen der Kamera in Meeresnähe oder am Strand ist Schutz gegen Salzwasser und Sprühnebel sowie gegen Sand erforderlich.

  • Vermeiden Sie plötzlichen Temperaturwechsei. Dieser kann zu Kondenswasserbildung und damit zu Korrosionsschäden führen.

  • Unterlassen Sie eigenmächtiges Eingreifen in die Kamera. Suchen Sie im Bedarfsfall eine Service-Werkstatt auf.


Wir bitten, alle Hinweise dieser Bedienungsanleitung zu beachten. Unsachgemäße Handhabung der Kamera kann zu Schäden führen, deren Behebung außerhalb unserer Garantieleistung liegt.


Durch Weiterentwicklung der PRAKTICA BX 20 können sich geringfügige Abweichungen von dieser Druckschrift ergeben.
Beitrag Forum: Praktica-Forum   Geschrieben: Mo, 26. Mai 2008 23:07   Titel: Praktica BX 20 Bedienungsanleitung

Practica BX 20 Bedienungsanleitung



Inhaltsverzeichnis

Einleitung
Technische Merkmale
Bezeichnung der Einzelteile
Vorbereitung zur Aufnahme
Batterie einlegen
Batterie prüfen
Rückwand öffnen
Film einlegen
Rückwand schließen
Aufnahmebereitschaft herstellen
Filmempfindlichkeit einstellen
Aufnahmevorgang
Automatische Belichtungszeiten
Steuerung
Vorwahl der Blendenzahl
Belichtungsautomatik, Anzeige
Auslösen
Messwertspeicherung
Belichtungskorrektur
Teilautomatische Arbeitsweise
Kamerahaltung
Blitzlichtaufnahmen
Objektivwechsel
Bildschärfe einstellen
Schärfentiefenanzeige
Infrarotaufnahmen
Auslöser
Verriegeln des Auslösers
Selbstauslöser
Filmwechsel
Pflege der Kamera




Einleitung


Mit der PRAKTICA BX 20 besitzen Sie eine hochwertige Kleinbildspiegelreflexkamera, die sich durch hohen Bedienungskomfort auszeichnet und die einen großen Spielraum für gestalterische Kreativität bietet.

In einem Bereich von 1/1000 s bis 40 s werden die Belichtungszeiten vollautomatisch gesteuert. Die Mikroelektronik der PRAKTICA BX 20 ermöglicht darüber hinaus das Fotografieren mit festen Belichtungszeiten zwischen 1/1000 s und 1 s sowie beliebig langen Belichtungszeiten mit der B-Einstellung.

Die Innenmessung erfolgt bei offener Blende und somit hellstem Sucherbild durch die elektronische Blendenwertübertragung.

Die PRAKTICA BX 20 ist mit einem System zur Blitzinnenmessung ausgerüstet. Bei Verwendung eines systemkonformen Computerblitzgerätes wird das Blitzlicht von der Kamera gemessen, ausgewertet und für die richtige Belichtung dosiert. Neben Computerblitzgeräten können auch herkömmliche Elektronenblitzgeräte verwendet werden.

Für gezielte Ober- und Unterbelichtung ist die Automatik manuell korrigierbar.

An den Rändern des übersichtlichen und hellen Sucherbildes werden durch Leuchtdioden angezeigt: die zu erwartende Belichtungszeit, Grenzwerte, Arbeitsstufen (Voll- bzw. Teilautomatik), Memofunktion, Belichtungskorrektur sowie Blitzbereitschaft einschließlich Blitz"0.K."Signal bei systemkonformen Computerblitzgeräten.

Am unteren Sucherbildrand sind die vorgewählte Blendenzahl und die Anzeige für den Kameraspannzustand sichtbar.

Die PRAKTICA BX 20 verfügt über einen Winderanschluß und gestattet in bekannter Weise den Anschluss des PRAKTICA-Zubehörs.



Technische Merkmale


Einäugige Spiegelreflexkamera für Bildformat 24 mm x 36 mm, Innenmessung bei Offenblende durch elektronische Blendenwertübertragung

Automatische elektronische Belichtungszeitensteuerung stufenlos von 1 /1000 s bis 40 s Automatik auf Teilautomatik umschaltbar, dabei Festzeiten von 1 /1000 s bis 1 s

Elektronische Blitzinnenmessung und Blitzdosierung bei Verwendung systemkonformer Computerblitzgeräte, Synchronisation (ca. 1 /100 s)

Blitzbereitschaftsanzeige (und Blitz "O.K."-Signal) im Sucherbild

Belichtungszeitenvorinformation im Sucher durch Leuchtdioden

Grenzwertanzeige bei Unter- bzw. Überbelichtung

Eingestellte Blende am unteren Sucherbildrand sichtbar

Information über den Spannzustand der Kamera

Manuelle Korrektur der Belichtung im Bereich von ± 2 Belichtungsstufen und Anzeige der Korrektur durch rote Leuchtdiode im Sucherbild bei±

Meßwertspeicherung und Anzeige dieser Funktion durch grüne Leuchtdiode im Sucherbild be AEL (automatic exposure lock)

Selbstauslöser (ca. 10 s) mit Startknopf und
Doppelfunktion als Abblendhebel zur Schär-
fentiefenkontrolle

Bildeinstellsystem: Fresnellinse mit neuartigem, diagonal angeordneten Tripelmeßkeil, Monoplanrasterring und Mattring

Sucherbildgröße ca. 95% der Bildseiten

PRAKTICA-Bajonett (Anlagemaß 44,4 mm,
Innendurchmesser 48,5 mm)

Anschluß für Motoraufzug

Memohalter an der Kamerarückwand

Batteriekontrolle durch Information im Sucher

Energiequelle: Primär-Batterie 6V (z.B.
PX 28/Mallory)

Silizium-Fotosensor als Lichtempfänger

Meß- und Steuerbereich: 0-17 EV bei
100 ASA und Blende 1,4

Abmessungen (Gehäuse):
141 mmx88 mmx49 mm

Masse (Gehäuse ohne Batterie): 510 g



  1. Filtergewinde
  2. Entriegelungstaste
  3. Auslöser für Selbstauslöser
  4. Spannhebel für Selbstauslöser (Betätigung
    gegen Uhrzeigerrichtung), Abblendhebel zur
    Schärfentiefenkontrolle (Betätigung in Uhrzei
    gerrichtung)
  5. Bildzähler
  6. Spannhebel
  7. Fenster für Blendenwerteinspiegelung
  8. Rlückspukurbel
  9. Rückspulknopf
  10. Einstellring für Filmempfindlichkeit
  11. Entriegelungstaste Filmempfindlichkeit
  12. Speicher- und Batterieprüftaste (Memory-Taste)
  13. Blendeneinstellring
  14. Entfernungseinstellring
  15. Schärfentiefenskala und Infrarotpunkt
  16. Einsetzmarkierung am Objektiv
  17. Trageöse
  18. Rückspulauslöser
  19. Marke für Automatik-Betrieb
  20. Auslöserverriegelung
  21. Betriebsartenwähler für Belichtungszeiten und Automatik
  22. Auslöser mit Anschluß für Drahtauslöser
  23. Steckschuh mit Mittenkontakt
  24. Mittenkontakt
  25. Computerblitz-Koppelstelle
  26. Einstellzeiger für Belichtungskorrektur mit Index
  27. Rückwand
  28. Filmaufwickelspule
  29. Filmtransportrolle
  30. Verschlußlamellen
  31. Patronenraum
  32. Okularfassung mit Zubehörwechselstelle
  33. Steckrahmen (Memohalter)
  34. Deckel für Batterieraum
  35. Stativgewinde
  36. Führungskanal für Motoraufzug
  37. Kupplung für Motorauzug
  38. Arretierung für Motoraufzug
  39. Kontakte für Motoraufzug
  40. Marke (Einsetzhilfe fürBatterieraumdeckel



Batterie einlegen


Zur Stromversorgung des gesamten Elektroniksystems wird eine Energiequelle von 6 Volt benötigt. Das kann eine Alkali-Mangan-, SilberOxid oder Lithiumbatterie sein.

Es lassen sich jedoch auch 4 Knopfzellen (z. B. LR 44) in Batteriehülse (Bestell.﷓Nr. 961 363) verwenden.

Eine frische Batterie reicht bei normalem Gebrauch der Kamera ca. 2 Jahre.

Beim Einlegen Batterieraumdeckel (34) in Pfeilrichtung schieben und herausschwenken. Kontakte im Batterieraum und an der Batterie mit trockenem Tuch säubern. Batterie mit Pluspol gegen den federnden Kontakt drücken (Polaritätskennzeichnung im Batterieraum) und hineinkippen. Deckel mit Pfeil in Richtung der Markierung einsetzen, niederdrücken und einschnappen lassen.

Es ist ratsam, die Kontaktstellen an der Batterie und im Batterieraum Von Zeit zu Zeit nachzusehen und ggf. zu reinigen. Gegen tiefe Temperaturen ist die Batterie empfindlich und sollte in geeigneter Weise geschützt werden.

Batterie bei längerer Nichtbenutzung aus dem Batterieraum der Kamera entfernen.


Batterie prüfen

Verschluß muß gespannt sein. Auslöser (22) und dann Memorytaste (12) drücken. Ist die Leuchtdiodenanzeige gut sichtbar, ist die Batterie in Ordnung. Bei verbrauchter Batterie verlöschen die Leuchtdioden am rechten Sucherbildrand. Bei den Einstellungen "B" und "~" ist keine Batterieprüfung möglich.




Rückwand öffnen




Rückspulknopf (9) bis zum Anschlag nach oben ziehen, so daß sich die Rückwandverriegelung löst. Rückwand vollständig öffnen, dabei springt der Bildzähler (5) selbständig in die Ausgangsstellung zurück.


Film einlegen

Achtung! Vor dem Filmeinlegen sollte der Betriebsartenwähler auf eine kurze Festzeit eingestellt werden, da sich bei der Einstellung Automatik "auto" eine lange Belichtungszeit bilden kann. Bis zum Ende des Verschlußablaufens ist der Spannhebel gesperrt. Keine Gewaltanwendung!

Gegebenenfalls können Sie eine lange Belichtungszeit durch Umstellen von "auto" auf "B" abbrechen. Eine lange Belichtungszeit wird bei Einstellung "auto" auch beim Auslösen ohne eingesetztes Objektiv gebildet.

Filmpatrone in den Patronenraum (31) einlegen. Rückspulknopf (9) wieder vollständig hineindrükken, ggf. dabei drehen. Filmanfang mindestens 1 cm in den Schlitz der Aufwickelspule (28) einführen, den Spannhebel vorsichtig betätigen, bis die Zähne der Filmtransportrolle (29) in die Perforation des Filmes eingreifen.

Spannhebel bis an den Endanschlag bewegen und zurückführen. Kamera durch Druck auf den Auslöseknopf (22) auslösen.

Rückwand schließen

Rückwand in der Mitte der Riegelseite fassen und gegen den Kamerakörper drücken, bis die Verriegelung hörbar einrastet.



Aufnahmebereitschaft herstellen


Der Spannhebel (6) läßt sich etwas ausschwenken, ohne den Aufzugsvorgang bereits einzuleiten. Diese Bereitschaftsstellung erhöht die Griffsicherheit bei schneller Bildfolge. Spannhebel vollständig bis zum Anschlag schwenken, zurückführen und Kamera mit Auslöser (22) auslösen. Vorgang wiederholen und nochmals spannen, bis der automatische Bildzähler (5) die Bildzahl " 1 " anzeigt. Über den Spannzustand der Kamera wird am unteren Sucherbildrand informiert: Blendenzahlbild rot -Kamera ungespannt, Blendenzahlbild farblos -Kamera gespannt Der ordnungsgemäße Filmtransport ist am Mitdrehen des Rückspulknopfes (9) bei Betätigung des Spannhebels (6) kontrollierbar.


Filmempfindlichkeit einstellen



Entriegelungstaste (11) drücken und durch gleichzeitiges Drehen des Einstellringes (10) die auf der Filmpackung angegebene Filmempfindfichkeit (ASA-Wert) gegenüber dem Index auf dem Korrekturwertzeiger (26) einstellen. Als Gedächtnisstütze über die Art des eingelegten Filmes kann die abgetrennte Deckellasche der Filmschachtel in den Steckrahmen (Memohalter, 33) eingeschoben werden.



Automatische Bellichtungszeitensteuerung


Die PRAKTICA BX 20 arbeitet bei AutomatikEinstellung "auto" stufenlos und automatisch im Belichtungszeitenbereich von 1/1000 s bis 40 s. Die elektronische Belichtungszeitensteuerung erfolgt entsprechend den Lichtverhältnissen, der vorgewählten Blendenzahl und der Filmempfindlichkeit. Leuchtdioden im Sucherbildrand informieren über die angesteuerte Belichtungszeit. Bei "OVER" oder "UNDER" weisen sie auf Uberbzw. Unterschreitung des Belichtungszeitenbereiches hin.

Durch die Innenmessung werden die Belichtung beeinflussende Faktoren, wie Brennweite des Objektives, Filter, auszugsverlängerndes Zubehöre, automatisch berücksichtigt.

Werden über Adapter Objektive mit PRAKTICA-Gewindeanschluß M 42X1 verwendet, erfolgt die Lichtmessung automatisch bei Arbeitsblende.


Vorwahl der Blendenzahl



Durch Drehen des Blendenringes (13) die gewünschte Blendenzahl der Marke auf der Objektivfassung gegenüberstellen. Die eingestellte Blendenzahl ist dabei am unteren Rand des Sucherbildes eingespiegelt.

Wird der Hebel (4) in Pfeilrichtung betätigt, schließt sich die Blende entsprechend der eingestellten Blendenzahl und die Schärfäntiefe ist im Sucherbild beurteilbar.


Belichtungsautomatik, Anzeige

Betriebsartenwähler (21) auf Automatik "auto" einstellen. Durch leichten Druck auf den Auslöser (22) wird die Elektronik eingeschaltet. Im Sucherbild kann die von der Automatik ermittelte Belichtungszeit durch Leuchtdioden überwacht und, falls sie nicht motivgerecht erscheint, durch Vorwahl einer anderen Blendenzahl korrigiert werden. Dabei ist jeder Zeitstufe im Bereich von 1/1000 s bis 8 s eine Leuchtdiode zugeordnet; Zwischenwerte der stufenlosen Einstellung werden durch gleichzeitiges Leuchten zweier benachbarter Dioden angezeigt. Belichtungszeiten zwischen 8 s und 40 s signalisiert die Leuchtdiode durch Dauerlicht bei "UNDER", Über- bzw. Unterschreitung der Werte 1/1000 s bzw. 40 s werden durch Blinklicht bei "OVER" bzw. "UNDER" angezeigt. In diesem Fall wird der Verschluß stets mit 1 /1000 s bzw. 40 s gesteuert. Bilden sich Belichtungszeiten von 1/15 s und länger, ist die Verwendung eines Stativs oder einer anderen geeigneten festen Unterlage erforderlich.


Auslösen


Nach Kontrolle der Belichtungszeit im Sucher ist durch Weiterdrücken des Auslösers (22) der Verschluß auszulösen. Beim nachfolgenden Loslassen des Auslösers wird die Elektronik automatisch abgeschaltet.

Das Loslassen des Auslösers während langer Belichtungszeiten hat keinen Einfluß auf den Belichtungsvorgang. In diesem Fall erfolgt das Abschalten der Elektronik nach dem vollständigen Verschlußablauf.

Soll bei einer sehr langen Belichtungszeit der Ablauf vorzeitig abgebrochen werden (z. B. nach irrtümlichem Auslösen), so ist der Betriebsartenwähler (21) kurzzeitig auf "B" zu stellen.


Meßwertspeicherung

Weist das Fotomotiv einen besonders großen Kontrast auf (z.B. dunkel bekleidete Personen imsonnenbeschienenenSchneeoderhellerAufnahm egegenstand vor dunklem Hintergrund), ist der Belichtungswert durch individuelle Messung des wichtigsten Bildelementes aus Nahdistanz zu ermitteln. Der bei der Nahmessung ermittelte Meßwert wird gespeichert, und der Bildausschnitt kann danach verändert werden, ohne daß sich eine andere Belichtung ergibt. Zur Speicherung des Meßwertes die Kamera spannen, den Auslöser (22) leicht drücken (Meßvorgang) und kurzzeitig die Memory-Taste (12) betätigen (Meßwertspeicherung, die Leuchtdiode neben AEL leuchtet).

Danach erfolgt bis zum Auslösen des Verschlusses keine neue Messung mehr; der Verschluß bildet die Belichtungszeit entsprechend dem gespeicherten Wert. Durch Loslassen des Auslösers und somit Ausschalten der Elektronik wird die Meßwertspeicherung wieder gelöscht.


Belichtungskorrektur

Eine weitere Möglichkeit, die Belichtung individuell zu beeinflussen, besteht mit dem Einstellsystem für Belichtungskorrektur (10, 26). Derartige Korrekturen sind bei stärkeren Abweichungen des Objektcharakters vom Normalobjekt, z. B. bei dunklen Motiven vor hellem Hintergrund (+ 1, +2) und bei hellen Motiven vor sehr dunklem Hintergrund (-1, -2), notwendig. Dazu Einstellring für Filmempfindlichkeit (10) anheben und Zeiger (26) zum gewünschten Korrekturwert drehen.

Daß eine Korrektur vorgenommen wurde, wird durch eine Leuchtdiode (±) am linken Sucherbildrand signalisiert. Von der Ausgangsstellung ausgehend wird beim Einstellen auf + 1 bzw. + 2 im Automatikbetrieb die Belichtungszeit um 1 bzw. 2 Belichtungswerte verlängert. Sinngemäß findet eine Verkürzung beim Einstellen auf -1 bzw. -2 statt. Dabei kann die Rastung in halben Stufen vorgenommen werden. An den Grenzen des Filmempfindlichkeitsbereiches 12 ASA und 3200 ASA ist die Korrektur von 2 Stufen ebenfalls möglich. Eine Erweiterung des Belichtungszeitenbereiches über die Werte 1 /1000 s und 40 s hinaus erfolgt durch die Korrektur nicht. Achtung! Nach derartigen Korrekturen Einsteller wieder in die Ausgangsstellung 0-Stellung bringen. Die Leuchtdiode (±) verlischt.


Teilautomatische Arbeitsweise

Wollen Sie mit einer bestimmten Belichtungszeit fotografieren, z.B. bei Reproduktionen, wissenschaftlich-technischen Aufnahmen, so ist die PRAKTICA BX 20 auf Teilautomatik umzuschalten. Es stehen feste Belichtungszeiten abgestuft von 1 s bis 1/1000 s und B für beliebig lange Zeiten zur Verfügung. Mit dem Betriebsartenwähler (21) ist die gewünschte Zeit vorzuwählen, damit ist gleichzeitig die Teilautomatik eingestellt. Wie bei der automatischen Belichtungszeitensteuerung wird durch einen leichten Druck auf den Auslöser die Kameraelektronik eingeschaltet.

Die Belichtungskontrolle erfolgt ebenfalls mit Hilfe der Leuchtdioden im Sucher. Während die zur eingestellten Belichtungszeit zugehörige Leuchtdiode blinkt, zeigt eine andere gleichzeitig die entsprechend den Lichtverhältnissen, der Filmempfindlichkeit und der vorgewählten Blendenzahl notwendige Belichtungszeit durch Dauerlicht an. (Bei Zwischenwerten leuchten zwei benachbarte Leuchtdioden gleichzeitig.) Um den Abgleich herbeizuführen, sind Blendenzahl oder Belichtungszeit so lange zu verändern, bis die Leuchtdiode in Dauerlicht übergeht. Bei der Einstellung "B" erfolgt keine Leuchtdiodenanzeige. Die Festzeiten werden durch die aufgeführten Korrekturmöglichkeiten nicht beeinflußt.


Kamerahaltung



Nebenstehende Abbildung zeigt die StandardKamerahaltung. Kamera ruhig und fest halten und den Ellenbogen am Körper abstützen. So erzielen Sie verwacklungsfreie Aufnahmen.

Blitzlichtaufnahmen

Reicht das vorhandene Licht (z. B. Innenaufnahmen) zum sicheren Fotografieren aus der Hand nicht mehr aus oder soll das Motiv zusätzlich aufgehellt werden, empfiehlt es sich zu blitzen. Es können alle Elektronenblitzgeräte mit bzw. ohne Computerblitzsteuerung und entsprechender Anpassung verwendet werden. Blitzgerät in Steckschuh (23) einschieben, die kabellose elektrische Verbindung ist damit hergestellt.

Für Elektronenblitzgeräte ohne Computersteuerung ist der Betriebsartenwähler (21) auf "~" zu stellen. Die eingestellte Belichtungszeit beträgt dann 1 /100 s.

Wird ein systemkonformes Computerblitzgerät in den Steckschuh eingesetzt und der Betriebsartenwähler (21) auf "auto" gestellt, signalisiert eine Leubhtdiode am Sucherbildrand bei "~" die Blitzbereitschaft des Systems. In diesem Moment verlischt die Automatikanzeige.

Die Blitzbereitschaft wird auch bei Verwendung eines Computerblitzgerätes, wenn der Betriebsartenwähler auf" ~ " steht, angezeigt.

Für die richtige Filmbelichtung sorgt die Blitzinnenmessung in der Kamera, d. h., das reflektierte Blitzlicht wird durch das Kameraobjektiv aufgenommen, von der Kamera ausgewertet, und über die kabellose Steckschuhverbindung erfolgt die Blitzbeeinflussung TTL-Blitzautomatik.

Das Blitz-"0. K. "-Signal, d. h. die Blitzlichtmenge reichte zur richtigen Filmbelichtung aus, ist aus der Blitzbereitschaftsanzeige abzuleiten. Leuchtet die Leuchtdiode "~" unmittelbar nach dem Aufnahmevorgang wieder auf, so ist die Ausleuchtung der soeben durchgeführten Blitzaufnahme in Ordnung, also "O.K.". In abweichenden Grenzfällen ist das "0.K."-Signal am Blitzgerät zu beachten. Die Blitzbereitschaft bleibt erhalten, auch wenn die Memory-Taste gedrückt wurde und die grüne LED bei "AEL"Meßwertspeicherung signalisiert. Eine Belichtungskorrektur, signalisiert durch die rote LED bei (±) wird durch die Blitzautomatik berücksichtigt.

Um bei Blitzbetrieb im Bereich großer Objektleuchtdichten Fehlbelichtungen zu vermeiden, wird empfohlen, sich durch Ausschalten des Computerblitzgerätes zu vergewissern, daß die der Umfeldleuchtdichte entsprechende Belichtungszeit länger als 1/125 s ist. Nähere Angaben zur Blitztechnik entnehmen Sie bitte der Blitzgerätebedienungsanleitung



Objektivwechsel


Entriegelungstaste (2) drücken und gleichzeitig Objektiv gegen den Uhrzeigersinn bis Anschlag drehen. Objektiv aus der Kamera entnehmen. PRAKTICA-Objektiv so einsetzen, daß sich die roten Markierungen (16 und 2) an Objektiv und Kamera gegenüberstehen. Objektiv gegen den Kamerakörper drücken und im Uhrzeigersinn drehen, bis Verriegelungsstift hörbar einrastet.

Mit Hilfe des PRAKTICA-Adapters können alle Original-PRAKTICA-Objektive mit Gewindeanschluß M 42x 1 angeschlossen werden.

Fremdobjektive mit Gewindeanschluß M 42x1 müssen für PRAKTICA-Kameras geeignet und für Arbeitsblendenmessung eingerichtet sein. Die PRAKTICA BX 20 arbeitet auch in Verbindung mit den Gewindeobjektiven automatisch. Lediglich die Lichtmessung erfolgt bei Arbeitsblende.


Bildschärfe einstellen

Das Scharfeinstellen ist mit Tripelmeßkeilsystem, Monoplanrasterring oder Mattring möglich.

1 Tripelmeßkeil

Dieses Keilsystem erlaubt eine sehr hohe Einstellgenauigkeit der Bildschärfe. Die optimale Einstellung ist erreicht, wenn Konturen und Linien einen natürlichen Verlauf haben. Bei Unschärfe sind die Motivkonturen im mittleren Kreissegment verschoben.

2 Monoplanrasterring

Die richtige Bildschärfe ist eingestellt, wenn das Bild innerhalb des Rasterfeldes klar und flimmerfrei sichtbar ist.

3 Mattring

Besonders günstig bei Lupen- und Mikroaufnahmen sowie bei Objektiven mit kleiner relativer Öffnung (Blendenzahl größer als 4). Das Bild muß klar und scharf im Mattring erscheinen.


Schärfentiefenanzeige



Die Grenzen des Schärfentiefenbereiches können für die gewählte Blendenzahl auf der Schärfentiefenskale (15) des Objektives abgelesen werden. Zum Beispiel: Entfernung 3 m, Blendenzahl 8-Schärfentiefe reicht von etwa 2 m bis 5 m.

Infrarotaufnahmen

Infrarotaufnahmen erfordern eine geringfügige Korrektur der Scharfeinstellung. Den beim Scharfeinstellen ermittelten Entfernungswert der Infrarotmarkierung (Hinweispfeil) auf dem Objektiv gegenüberstellen.


Auslöser[/highlight]




Für einfachstes Bedienen sind im Auslöser (22) mehrere Funktionen untergebracht. Bei gespannter Kamera werden durch leichtes Drükken bis zum Druckpunkt die Automatik sowie die LED's für Belichtungszeiten bzw. für Blitzbereitschaft (bei speziellen Blitzgeräten) eingeschaltet. Beim Weiterdrücken erfolgt das Auslösen des Verschlusses.

Verriegeln des Auslösers

Ungewolltes Auslösen bzw. unnötiger Stromverbrauch beim unbeabsichtigten Drücken des Auslösers im gespannten und ungespannten Zustand der Kamera lassen sich durch die Auslöserverriegelung vermeiden.

Hierzu wird die unter dem Betriebsartenwähler angeordnete Auslöserverriegelung (20) in Pfeilrichtung betätigt und damit der Auslöser gesperrt. Die Entriegelung erfolgt sinngemäß in entgegengesetzter Richtung.


Selbstauslöser

Kamera spannen, Spannhebel (4) des Selbstauslösers in Pfeilrichtung 1) bis zum Anschlag schwenken, durch Druck auf den Startknopf (3), entsprechend Pfeil 2), Selbstauslöser auslösen. Vorlaufzeit etwa 10 s. Während der Nachlaufzeit des Vorlaufwerkes Kamera nicht spannen!
Befindet sich ein eingeschalteter Motoraufzug an der Kamera, so können während der Nachlaufphase bei kurzen Belichtungszeiten mehrere Aufnahmen belichtet werden. Wird das nicht gewünscht, so ist der Motoraufzug auszuschalten. Bei Automatikbetrieb ist, um Fehlmessungen zu vermeiden, das Okular mit der Okularschutzkappe abzudecken.



Filmwechsel


Der Bildzähler (5) zeigt die bereits belichteten Bilder eines Filmes an. Ist die mit dem jeweils eingelegten Film erreichbare Anzahl von Bildern belichtet (Rotmarkierung bei 20 bzw. 36), Filmwechsel vornehmen.

Rückspulauslöser (18) bis zum Einrasten drükken, Rückspulkurbel (8) ausklappen und in Pfeilrichtung drehen, bis erhöhter Widerstand und anschließende Leichtgängigkeit das Ende des Rückspulvorganges signalisieren Rückspulknopf (9) bis zum Anschlag nach oben ziehen. Rückwand ist entriegelt und springt auf. Filmpatrone kann entnommen werden. Filmwechsel nicht in voller Sonne vornehmen.

Achtung!

Sind mehr Aufnahmen, als auf der Filmpackung angegeben, belichtet worden, kann der Spannhebel möglicherweise nicht voll geschwenktwerden.

Keine Gewaltanwendung!

Film zurückspulen und Spannhebel bis zum Anschlag schwenken.



Pflege der Kamera


  • Kamera vor Stoß, Schlag, Staub und Feuchtigkeit schützen.

  • Patronen﷓ und Spulenraum, Filmbahn und Rückwand von Zeit zu Zeit mit weichem Pinsel säubern.

  • Keine organischen Lösungsmittel wie z. B. Spiritus oder Lackverdünner zum Reinigen der Kamera verwenden.

  • Einwirkung aggressiver Dämpfe auf Kamera und Objektiv vermeiden.

  • Fingerabdrücke auf Linsenflächen von Objektiv und Okular mit Linsenreinigungspapier entfernen.

  • Spiegel, Bildfeldlinse und Verschlußlamellen nicht mit den Fingern berühren. Diese Verunreinigungen können nur von einer ServiceWerkstatt entfernt werden.

  • Zum Beseitigen von Staub wird ein Optikpinsel oder ein Blaseball empfohlen.

  • Kameras niemals längere Zeit sehr hohen oder tiefen Temperaturen aussetzen. Vermeiden Sie z. B. bei Sonneneinstrahlung die Lagerung der Kamera auf der Hutablage eines Kraftfahrzeuges.

  • Vor extremer Kälte ist die Kamera in geeigneter Weise zu schützen.

  • Beim Benutzen der Kamera in Meeresnähe oder am Strand ist Schutz gegen Salzwasser und Sprühnebel sowie gegen Sand erforderlich.

  • Vermeiden Sie plötzlichen Temperaturwechsei. Dieser kann zu Kondenswasserbildung und damit zu Korrosionsschäden führen.

  • Unterlassen Sie eigenmächtiges Eingreifen in die Kamera. Suchen Sie im Bedarfsfall eine Service-Werkstatt auf.


Wir bitten, alle Hinweise dieser Bedienungsanleitung zu beachten. Unsachgemäße Handhabung der Kamera kann zu Schäden führen, deren Behebung außerhalb unserer Garantieleistung liegt.


Durch Weiterentwicklung der PRAKTICA BX 20 können sich geringfügige Abweichungen von dieser Druckschrift ergeben.
Beitrag Forum: Fotowiki   Geschrieben: Fr, 28. Mar 2008 19:18   Titel: Abbildungsmaßstab

Abbildungsmaßstab


Wechseln zu: Suche

Der Abbildungsmaßstab (Formelzeichen β) ist definiert als das Verhältnis zwischen der Größe der optischen Abbildung (B, Bild) eines Gegenstandes und dessen realer Größe (G, Gegenstand) ( β = B / G).

Bekanntes Beispiel ist der Maßstab in der Kartografie: Hat eine Landkarte beispielsweise einen Maßstab von 1:100.000, dann ist die Realität 100.000-mal größer ist, als die Abbildung auf der Karte. 1 cm auf der Karte entspricht demnach 100.000 cm = 1 km in der Realität.

  • Ein Abbildungsmaßstab von 1:1 sagt aus, dass der Gegenstand und seine Abbildung gleich groß sind
  • Ein Abbildungsmaßstab von 1:2 sagt aus, dass der Gegenstand doppelt so groß ist, wie seine Abbildung
  • Ein Abbildungsmaßstab von 2:1 sagt aus, dass die Abbildung doppelt so groß ist, wie der Gegenstand.



Fotografie


In der Fotografie bezeichnet man als Abbildungsmaßstab das Verhältnis der Abbildungsgröße eines Objektes auf der Filmebene zur Größe des Originalobjektes selbst. Der Abbildungsmaßstab nimmt mit kleiner werdendem Abstand zum Objekt und mit Verlängerung der Objektivbrennweite zu.
Aufgrund der einem jeden Objektiv eigenen Naheinstellgrenze (der Mindestabstand zum Objekt), unterhalb derer es nicht mehr möglich ist auf das Objekt zu fokussieren, kann der Objektabstand allerdings nicht beliebig verringert werden. Ein Objektiv besitzt also einen maximalen Abbildungsmaßstab.

Spezielle Objektive für die Makrofotografie, die sogenannten Makro-Objektive, können mit einem besonders geringen Objektabstand eingesetzt werden und ermöglichen dadurch einen besonders großen Abbildungsmaßstab, wie beispielsweise 1:2 (die Abbildung ist halb so groß wie das Objekt) oder 1:1 (Objekt wird in Originalgröße auf der Filmebene abgebildet). Bei Abbildungsmaßstäben von mindestens 1:4 wird ein Objektiv als makrofähig bezeichnet. Normale Objektive erzielen maximale Abbildungsmaßstäbe im Bereich von 1:7 bis 1:9.

Ein Anfang der 1990er Jahre vorgestelltes Spezialobjektiv von Minolta, das Minolta AF Macro Zoom 3x–1x (1:1,7–1:2,8), ermöglicht sogar einen Abbildungsmaßstab von 3:1; es kann also ein Objekt dreifach vergrößert auf die Filmebene abbilden. Um derartige Abbildungsmaßstäbe ohne Spezialobjektive zu erzielen, müssen normalerweise ein Balgengerät, Zwischenringe oder ein Objektiv in Retrostellung eingesetzt werden.

Beispiele zur Berechnung des Abbildungsmaßstabes:

  • Bildet die Kamera einen 20 cm hohen Kopf auf dem Film mit einer Höhe von 0,5 cm ab, so ist der Abbildungsmaßstab 0,5:20 = 1:40 (= 0,025-fach)
  • Wird eine 35 mm lange Libelle formatfüllend auf 35-mm-Kleinbildfilm abgebildet, bedeutet dies einen Abbildungsmaßstab von 1:1


Häufig versäumen es die Hersteller von Wechselobjektiven, den mit einem bestimmten Objektiv erzielbaren Abbildungsmaßstab anzugeben; stattdessen wird nur der kürzestmögliche Objektabstand angegeben. Diese Angabe lässt jedoch nur einen eher indirekten Rückschluss über den effektiv erzielbaren Abbildungsmaßstab zu. Mit Testaufnahmen lässt sich der effektive Abbildungsmaßstab jedoch ermitteln.


Siehe auch


  • Relativer Abbildungsmaßstab
Beitrag Forum: Fotowiki   Geschrieben: Sa, 12. Jan 2008 12:02   Titel: Abblendtaste

Abblendtaste


Wechseln zu: Suche

Eine Abblendtaste (früher auch Abblendhebel) ist Bestandteil einäugiger Spiegelreflexkameras. Diese dient zur visuellen Kontrolle des Schärfebereichs (auch Schärfentiefe genannt) vor der Aufnahme. Drückt man den Abblendhebel, so schließt sich die Blende am Objektiv auf den eingestellten Wert und das Sucherbild wird dunkler. Die Kamera stellt von der hellen „Einstellblende“ auf die Arbeitsblende um, mit der die Aufnahme tatsächlich fotografiert wird. Gleichzeitig wird der als scharf wahrgenommene Bereich vor und hinter dem fokussierten Objekt erkennbar.

Je kleiner die an einer Kamera eingestellte Blendenöffnung, desto stärker dehnt sich der Schärfentiefe vor und hinter der Ebene aus, auf die fokussiert (scharf gestellt) wurde. Analog dazu ist bei großer Blendenöffnung der Schärfebereich geringer.

Dieser Effekt basiert auf der Tatsache, dass der Zerstreuungskreisdurchmesser in diesen Bildbereichen als „scharf“ wahrgenommen wird. Wirklich punktscharf werden nur Bildpunkte abgebildet, die in der Ebene des Fokus liegen.

Eine vielfach zitierte Faustregel besagt, dass die Ausdehnung des als noch scharf wahrgenommenen Bereichs einem Verhältnis von 2 Teilen hinter dem fokussierten Objekt und einem Teil davor entspräche. Diese Annahme ist jedoch falsch; vielmehr entspricht das Verhältnis des noch scharf wahrgenommenen Bereichs vor dem fokussierten Objekt zum scharf wahrgenommenen Bereich hinter dem fokussierten Objekt dem Verhältnis von Nah- zu Fernpunkt.

Da die Blendenzahl das Verhältnis von Brennweite zu Blendenöffnung wiedergibt, verhält sie sich umgekehrt proportional zur Größe der Blendenöffnung. Das heißt: Je kleiner die Blendenöffnung, desto größer die Blendenzahl:

Blendenöffnung: <-- groß ------------------- klein -->
Blendenskala: 2,8 ; 4 ; 5,6 ; 8 ; 11 ; 16 ; 22 ; 32


Bei modernen Kameras wird die Blende meist von einem zentralen Motor angetrieben, der außerdem die Spiegelauslösung und den Filmtransport bewerkstelligt. Derartige Kameras haben aufgrund dieser Kopplung häufig keine Abblendtaste. Diese benötigt einen separat gesteuerten Blendenmechanismus, der die Kamera aufwändiger und teurer macht. Ein ähnlicher Zusammenhang besteht bei der Spiegelvorauslösung.


Siehe auch


* Springblende


Weblinks


Ein Blick auf die Schärfentiefe


Kategorien:
Beitrag Forum: Sonstige Typen   Geschrieben: Do, 10. Jan 2008 19:23   Titel: Re: Anleitung zum Bau einer Lochkamera

Der bau einer Lochkamera ist aus praktisch allen möglich


Sei es eine Konservendose, eine Streichholzschachtel, ein Schuhkarton oder ein ganzer Raum. Wichtig ist, daß das Behältnis lichtdicht ist. Die Lochkamera sollte innen schwarz ausgemalt sein. Bei einer Lochkamera sind prinzipiell alle Eigenschaften selbst zu beeinflussen:

Die Brennweite:
Die Brennweite ist der Abstand vom Loch zum Film/Fotopapier in Millimetern. Bei einem Normalobjektiv einer Spiegelreflex sind dies etwa 50 mm = 5 cm. Macht man den Abstand 200mm = 20 cm lang, so hat man eine Telelochkamera.

Die Schärfe:
Der wesentlichste Punkt für die Schärfe ist das Loch: Je kleiner das Loch, desto größer die Schärfe, allerdings nur bis zu einem gewissen Punkt, da bei einem zu kleinen Loch Beugungserscheinungen auftreten, was wiederum zu Unschärfe führt. Idealerweise ist das Loch
bis maximal 1mm groß, wenn die Bilder scharf werden sollen. Die Schärfe wird auch durch die Qualität des Lochs beeinflußt: Ist es gleichförmig rund oder vielleicht sogar schlitzförmig? Ein schlitzförmiges Loch führt zu perspektivischen Verzerrungen. Ein minimal “ausgefranstes“ Loch zu hellen Blitzen oder stellenweisen Unschärfen.

Die Filmebene:
Man kann statt Film ebensogut Fotopapier verwenden, ebenso kann der Film/das Papier gebogen werden ( führt zu Verzerrungen).
Prinzipiell ist die Lochkamera überall gleich scharf. Der Vordergrund ist genau gleich scharf wie der Hintergrund. Auch Dinge, die ganz knapp vor der Kamera sind, werden scharf abgebildet.

Die Berechnung der Belichtung:
Wichtig für die Berechnung de Belichtung sind der Lochdurchmesser und der Abstand vom
Loch zum Film:
Abstand vom Loch zum Film in mm
Blendenwert = Durchmesser des Lochs in mm
Ein Beispiel: Man hat eine Lochkamera mit 6 cm Brennweite und ein Loch mit dem Durchmesser
0,25mm. Nach der Formel ergibt sich für die Kamera eine Festblende von 240. Bei einem
sonnigen Tag, an dem man mit einer normalen Kamera bei einem 100 ASA Film etwa Blende 8
und 1/125 sec. belichtet, ergibt sich etwa folgende Rechnung:


Blende:8 Zeit:1/125 sec.
Blende:11 Zeit:1/60 sec.
Blende:16 Zeit:1/30 sec.
Blende:22 Zeit:1/15 sec.
Blende:32 Zeit: 1/8 sec
Blende:45 Zeit: 1/4 sec.
Blende:64 Zeit:1/2 sec.
Blende:90 Zeit: 1 sec.
Blende:128 Zeit:2 sec.
Blende:180 Zeit:4 sec.
Blende:256 Zeit: 8 sec.


Man muß also etwa 8 sec. belichten. Bei verschiedenen Filmen ist noch der sogenannte Schwarzschildeffekt zu berücksichtigen. Man verdoppelt in etwa die Belichtungszeit ab 2 Sekunden, in diesem Fall hat man also etwa eine Belichtungszeit von 16 Sekunden.
Die internationale Blendenreihe lautet:
1/ 1,4/ 2/ 2,8/ 4/ 5,6/ 8/ 11/ 16/ 22/ 32/ 45/ 64/ 90/128/ 180/ 256/ 360/ 512/ 720/ 1024 /1440/ 2048...usw.
Von einer Blende zur nächsten ist es jeweils eine
Verdopplung bzw. Halbierung der Belichtungzeit.
Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 15:22   Titel: Objektive

Ein Objektiv ist ein sammelndes optisches System, das eine reelle optische Abbildung eines Objektes erzeugt. Bestandteile eines Objektivs können sowohl Linsen als auch Spiegel sein, die je nach Einsatzzweck in unterschiedlichsten Gehäusen gefasst sind.

Das Objektiv ist die zentrale, die Abbildungseigenschaften und die Bildqualität bestimmende Komponente optischer Geräte, wie beispielsweise Kameras, Mikroskope, Ferngläser oder auch astronomische Teleskope.

Genau wie das Objekt ist das erzeugte Bild dreidimensional. Objekte, die sehr weit entfernt sind, also scheinbar im Unendlichen liegen (z.B. Sterne und andere Objekte am Himmel), werden in einer Ebene, der Bildebene, abgebildet.

Die Größe des Bildes hängt von der Brennweite der Linse ab. Je größer diese ist, desto größer ist auch das Bild. Um die Kamera für Linsen verschiedener Brennweite benutzen zu können, war sie mit einem Auszug (Balgen) versehen, der es gestattete, sie zu verlängern bzw. zu verkürzen; das Balgenprinzip wird auch heute noch in der Großbild- und Makrofotografie genutzt.


Man unterscheidet Objektive primär aufgrund ihrer Brennweite; dabei wird unterschieden zwischen

* Normalobjektiv
* Fernobjektiv
* Weitwinkelobjektiv und
* Fischaugenobjektiv.

Die oben genannten Kategorien gelten für Festbrennweiten-Objektive; sehr populär sind in der Amateurfotografie heutzutage mittlerweile Zoomobjektive, die die Veränderung der Brennweite erlauben und je nach Brennweiten-Bereichen auch mehrere der genannten Kategorien abdecken können. Zoomobjektive werden auch nach ihrem relativen Brennweitenbereich kategorisiert und sind umso schwerer und aufwendiger, je lichtstärker sie sind und ein je größeres Verhältnis zwischen längster und kürzester Brennweite sie abdecken.

Weitere wichtige Unterscheidungsmerkmale sind die Anfangsöffnung, oder anders ausgedrückt: wie lichtstark ein Objektiv ist, und der Bildwinkel, in dem ein Objektiv ein scharfes Bild entwirft.

Außerdem können Objektive nach verschiedenen konstruktiven Merkmalen unterschieden werden, z.B.

* Teleobjektiv
* Spiegellinsenobjektiv
* Makroobjektiv
* Tilt- und Shift-Objektiv
* Autofokus-Objektiv
* Infrarotobjektiv
* Objektive mit integrierter Bildstabilisierung
* Objektive mit elektrischer Ãœbertragung von Blendenwert etc. an die Kamera. (Electric-Objektive)

Eine weitere Eigenschaft eines Objektivs ist die kleinste Distanz auf die es fokussieren kann, die Naheinstellgrenze. Sie bestimmt wie nah man an das Motiv "herangehen" kann. (Siehe "Makroobjektiv")


Grundkonstruktionen

* Achromat
* Aplanat
* Apochromat
* Biotar
* Frontar
* Hypergon
* Meniskus
* Pankratisches System (umgangssprachlich: "Zoomobjektiv")
* Petzval-Objektiv
* Periskop (Symmetrisches Doppelobjektiv)
* Planar bzw. Gauß-Typ (auch: Doppel-Gauß-Konstruktion)
* Sonnar
* Telezentrisches Objektiv (Messtechnik)
* Tessar
* Triplet



Verwendung

Ein Projektor benutzt ein Objektiv, um ein stehendes oder bewegtes Bild vergrößert auf eine Wand zu projizieren.

In einem Mikroskop oder einem Teleskop betrachtet man das durch das Objektiv erzeugte Bild sehr kleiner oder weit entfernter Objekte durch ein Okular, ein weiteres Linsensystem. Beim Mikroskop liegt dabei die Bildebene näher beim Objektiv, und das Objektiv hat verglichen mit dem Okular eine kurze Brennweite. Beim Teleskop liegt die Bildebene näher am Okular, und das Objektiv hat die größere Brennweite.

In der Fotografie oder Videotechnik ist das Objektiv Teil eines Fotoapparates beziehungsweise einer Videokamera. Es erzeugt ein reelles Bild in der Bildebene, wo sich der lichtempfindliche Film oder ein elektronischer Sensor befindet. Man unterscheidet anhand der Brennweite zwischen Weitwinkelobjektiven, Normalobjektiven und Fernobjektiven (zumeist:Teleobjektiven). Lässt sich die Brennweite des Objektivs ändern, spricht man von einem Zoomobjektiv, sonst von einer Festbrennweite. Spezialobjektive sind das Fischauge (Fisheye) und TS-Objektive.

Geschichte und Entwicklung

Zu dem Fortschritt der Fotografie in der zweiten Hälfte des 19. Jahrhunderts haben die zahlreichen Vervollkommnungen der Objektive beigetragen. Früher benutzte man einfache achromatische Linsen, welche zur Erzielung scharfer Bilder stark "abgeblendet" werden mussten. Infolgedessen gaben sie sehr lichtschwache Bilder, die eine lange Expositionszeit nötig machten.

Ein großer Fortschritt war die Erfindung des Porträtobjektivs von Josef Petzval, einem lichtstarken Objektiv, das aus zwei Doppellinsensystemen besteht, bedeutend hellere Bilder lieferte als vorherige und damit die Aufnahme von Porträten in kurzer Expositionszeit ermöglichte. Zur Aufnahme von Landschaften, Architekturen etc. ist weniger Lichtstärke, aber ein großer Gesichtswinkel notwendig.

Die gewöhnlichen Landschaftsobjekte umfassen nur einen Winkel von 30° bis 45°, der meist zu klein ist. Man benutzte dazu früher ausschließlich einfache Linsen, später aber die Tripletobjektive, etwa ab den 1860er Jahren dann die von Steinheil eingeführten Aplanate. Das Tripletobjektive ist ein Objektiv, das insgesamt drei Linsen besitzt. Zu diesem System gehören auch die Euriskope, das Rapid Rectilinear u.a.

Diese geben bei einem Gesichtsfeld von ca. 60° eine hinreichende Lichtstärke, um in heiterem Sommerwetter selbst Momentaufnahmen zu gestatten. Ist ein noch größeres Gesichtsfeld als 60° nötig, so nimmt man Weitwinkellinsen, wie Buschs Pantoskop, Dallmeyers Wide angle lens, Steinheils Weitwinkelaplanat, Voigtländers Weitwinkeleuriskop, die ein Gesichtsfeld von 75 bis 100° besitzen.

Im Jahre 1860 konstruierte Thomas Sutton eine symmetrische Tripletlinse; das Objektiv bestand dabei aus zwei Konvexlinsen, deren vordere um etwa ein Drittel kleiner war als die Hinterlinse, sowie einer weiteren Einzellinse als konkaver Meniskus.

Steinheils Periskopobjektiv von 1865 ist ein verzeichnungsarmes Objektiv mit großem Bildwinkel, das erste Weitwinkelobjektiv im heutigen Verständnis.

Ludwig Seidel untersuchte in München die Abbildungsfehler der Linsen und veröffentlichte 1866 ein Formelsystem, das die Objektivkonstruktion erleichterte.

Hugo Adolf Steinheil konstruierte 1881 das erste Universalobjektiv.

Ernst Abbe und Otto Schott begannen ab 1880 mit der Entwicklung neuer Glassorten. Sie gründeten 1882 zusammen mit Carl Zeiss eine Glasschmelzerei in Jena. Mit Hilfe der neuen Gläser gelang es nach 1886 dem Mitarbeiter Paul Rudolph, ein Doppelobjektiv zu konstruieren, bei dem der Fehler des Astigmatismus erstmals korrigiert war: das Planar-Objektiv.

Der Astigmatismus kann auch durch Verwendung asphärischer Linsen korrigiert werden, die aber in der Herstellung viel komplizierter sind als sphärische Linsen.



siehe auch:
Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 15:08   Titel: Goldener Schnitt

Der goldene Schnitt


Kompositionsbestimmende Motivteile und dominante Linien wie z.B. Horizontlinien sollten nicht in der Bildmitte positioniert werden. Bereits die alten Griechen kannten ein Teilungsverhältnis für Flächen und Strecken, das der Mensch als besonders harmonisch empfindet, den so genannten Goldenen Schnitt. Mathematisch genau lautet das ausgewogene Verhältnis für Strecken und Flächen 1 : 1,618.

Einteilung der Bildfläche nach dem Goldenen Schnitt


In der Praxis, beim Fotografieren, wird man sich mit einer solchen Zahl sicher schwer tun. Das annähernde Verhältnis 3:5 kann man sich leichter vorstellen. Teilen wir das Bildformat in der Waagrechten und in der Senkrechten in fünf gleiche Teile auf, so ergibt sich das unten gezeigte Gitter. Um die Bildmitte ergeben sich vier Schnittpunkte, die hier durch ein rotes + gekennzeichnet sind. Legen wir nun über jeweils zwei dieser Punkte horizontale und vertikale Linien, so bilden diese die Anhaltspunkte zur Bildaufteilung nach dem Goldenen Schnitt.


Grafik 1: Anhaltspunkte für die Bildgestaltung nach dem Goldenen Schnitt


Beispiele

Die Wirkung des Goldenen Schnittes soll hier mit sehr einfachen Grafiken, ohne störende Bildelemente, deutlich gemacht werden.

Im nebenstehenden Beispiel (Grafik 2) wurde das bildbestimmende Motiv, eine Kerze und eine Zitrone, in die Bildmitte gesetzt. Die horizontale Trennlinie, die hintere Kante des Tisches, liegt genau in halber Bildhöhe. Hierdurch wirkt der Bildaufbau sehr statisch und recht langweilig. Dies ist ein Fehler, den besonders Anfänger immer wieder machen.



Grafik 2: Motiv in der Bildmitte positioniert



Im zweiten Beispiel (Grafik 3) sind die Bildelemente nach der vereinfachten Regel des Goldenen Schnittes angeordnet.

Das bildbestimmende Motiv, die Kerze mit der Zitrone, wurden auf den Kreuzungspunkt der rechten und der unteren Linie gesetzt (vergl. Grafik 1 ganz oben). Die hintere Kante des Tisches wurden nach dem Teilungsverhältnis 3:5 auf die untere Linie positioniert. Diese Bildkomposition wirkt harmonischer und natürlicher auf uns, als die zentrale Positionierung.


Grafik 3: Motiv nach dem Goldenen Schnitt positioniert


Ein kleiner Unterschied mit großer Wirkung! Noch deutlicher wird die unterschiedliche Bildwirkung, wenn man die beiden Bildgrafiken nacheinander für sich alleine betrachtet.

Nun haben wir ganz oben in der Gitter-Grafik (Grafik 1) gesehen, dass es nach dem Goldenen Schnitt nicht nur je eine Linie zur Aufteilung nach rechts und unten, sondern auch Linien für die Positionen links und oben gibt; also insgesamt vier Möglichkeiten, die zur Wahl stehen. Welche sollten denn nun gewählt werden?

Man kann es wohl so formulieren: Es ist das Feeling des Fotografen gefragt. Einen global gültigen Merksatz für die richtige Entscheidung in allen Motivsituationen gibt es nicht. Zwei weitere Kompositionsbeispiele sollen aber zeigen, warum bei diesem Motivbeispiel die Position der Kerze unten rechts, wie in Grafik 3 gezeigt, wohl am günstigsten empfunden wird:

Es ist sicher unschwer zu erkennen, dass unser Kerzenmotiv und die Tischkante auf der oberen waagrechten Linie, so wie in Grafik 4, nicht optimal positioniert sind.

Die obere Waagrechte eignet sich mehr für Landschaftsaufnahmen, bei denen das Hauptmotiv im Vordergrundliegt und/oder eine gewisse Schwere (Erdverbundenheit) zum Ausdruck kommen soll. Gute Fotobeispiele zu allen Kompositions-Möglichkeiten sind auf den verschiedenen Webseiten des nfac zu finden.


Grafik 4: Motiv oben links positioniert


Die Position der Kerze unten links ist grundsätzlich denkbar. Es ist sicher kein gravierender Fehler, sie so anzuordnen.

Wir sind jedoch in unseren Kulturkreisen die Schreib- und Leserichtung von oben links bis nach rechts unten von kleinauf gewohnt. Unmerklich wird unser Blick i.d.R. beim Betrachten eines Bildes von links beginnen; auch wenn es nur Bruchteile von Sekunden sind. Wenn keine besondere Linienführung im unseren Blick lenkt, "arbeiten" wir ein Motiv ähnlich wie in Lesemanier ab; natürlich aber gelenkt von Motivelementen.

Grafik 5: Motiv unten links positioniert

Die rechts positionierte Kerze kommt unserer Lese- und Betrachtungsgewohnheit daher mehr entgegen. Sie bindet unseren Blick nicht gleich in der linken Bildseite, sondern steht wie ein kleiner Höhepunkt am Ende unseres "Betrachtungsstreifzuges". Dies mag bei der doch recht simplen Kerzengrafik nicht gleich augenfällig werden. Wenn man aber gefällige Fotografien mal unter diesem Aspekt analysiert, wird man recht häufig auf die Anwendung dieses Gestaltungsmerkmals treffen.
Last but not least

Weitere Tipps werden das Thema der Bildgestaltung unter anderen Aspekten beschreiben. Nicht jedes Foto kann vorbehaltslos nach dem Goldenen Schnitt gestaltet werden. Für erfolgreiche Fotografie ist es aber wichtig, die grundlegenden Gestaltungsmöglichkeiten zu kennen und anwenden zu können, so auch den Goldenen Schnitt.

Text & Grafiken (c) by Lothar Franz

© 1998-2007 nfac - Konzept

siehe auch
Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 14:57   Titel: Lochkamera

Lochkamera

Wechseln zu: Suche


Eine Lochkamera ist das einfachste Gerät, mit dem sich optische Abbildungen erzeugen lassen. Sie benötigt dafür keine optische Linse, sondern nur eine dunkle Zelle (eine camera obscura), eine kleine Öffnung in dieser Zelle und eine Abschirmung, um das entstandene reelle Bild zu betrachten.



Funktionsweise



Funktionsweise einer Lochkamera


Ähnlich wie bei einer optischen Linse erzeugt ein kleines Loch auf einer Projektionsfläche eine Abbildung von angestrahlten oder selbst leuchtenden Gegenständen. Die Zeichnung rechts zeigt zwei Strahlenbündel, die von zwei Punkten eines Gegenstands in das Loch eintreten. Der kleine Durchmesser der Blende beschränkt die Bündel auf eine kleine Öffnung und verhindert die vollständige Ãœberlappung der Lichtstrahlen. Strahlen vom oberen Bereich eines Gegenstands fallen auf den unteren Rand der Projektionsfläche, Strahlen vom unteren Bereich werden nach oben weitergeleitet. Jeder Punkt des Gegenstands wird als Scheibchen auf der Projektionsfläche abgebildet. Die Ãœberlagerung der Scheibchenbilder erzeugt ein verzeichnungsfreies Bild. Mathematisch ausgedrückt ist das Bild das Ergebnis einer Faltung aus idealer Abbildung des Gegenstands mit der Blendefläche. In der rein theoretischen Betrachtung, ist die Lochkamera das Ideal einer Kamera.


Abbildungsgeometrie einer Lochkamera


Unschärfefleck


Abbildungsgeometrie der Lochkamera

Der Abstand der Projektionsfläche zum Loch ist die Bildweite b. Löcher können im Gegensatz zu Linsen die einfallenden Lichtstrahlen nicht brechen und demzufolge auch nicht bündeln. Es existiert kein Brennpunkt (F) und keine Brennweite (f). D ist der Durchmesser des Lochs. Der Quotient b/D ergibt die Blendenzahl, analog zur Blendenzahl f/D beim Objektiv. Je kleiner die Blendenzahl ist, desto lichtstärker ist das Bild. Eine Kammer mit b=100 mm und D=0.5 mm hat eine Blendenzahl von 100mm/0,5mm = 200. Eine Vergrößerung des Lochs auf 1 mm verringert die Blendenzahl auf 100mm/1mm = 100. Die Belichtungszeit verringert sich dabei um den Faktor 4 (Verhältnis der Lochflächen: (1mm/0.5mm)2 = 4). (Zum Vergleich: Kleinbildkameras haben kleinste Blenden zwischen 1,4 und ca. 4.)

Je kleiner der Lochdurchmesser D ist, desto kleiner sind die Strahlenbündel, umso schärfer erscheint die Abbildung. Für die Größe S des Unschärfeflecks gilt dabei



Die Bildgröße eines Lichtpunkts nimmt also linear mit der Blendengröße ab. Hierdurch gewinnt das Bild an Schärfe, wenn zu einer geringeren Blendengröße übergegangen wird. Oft wird dies verwechselt mit der Vermutung, dass das Bild insgesamt mit abnehmender Blendengröße kleiner wird. Kleiner werden jedoch nur die Unschärfen, die das Bild eines beobachteten Gegenstandes an dessen Begrenzungslinien "ausfransen" lassen.

Schärfentiefe



Vergleich: Foto einer Häuserzeile mit
Lochkamera (Schwarzweißaufnahme auf Filmmaterial) und
Linsenkamera (Farbaufnahme auf Halbleitersensor)



Die Schärfe der Bilder ist von der Entfernung der abzubildenden Gegenstände zum Loch (Gegenstandsweite) nicht abhängig. Es ist also keine Entfernungseinstellung erforderlich, die „Schärfentiefe“ ist „unendlich“. (Dies ist ein grundsätzlicher Unterschied zu mit Linsen ausgestatteten Kameras, bei denen eine Entfernungseinstellung erforderlich ist und die deshalb auch als „fokussierende“ Kameras bezeichnet werden.) Die Bilder sind jedoch nie ganz scharf, da das Loch aus Gründen der Lichtstärke und Beugung nicht beliebig klein gewählt werden kann. Bei großen Bildweiten (starke Vergrößerungen) hat die Lochkamera jedoch ein befriedigendes Auflösungsvermögen, feine Details lassen sich befriedigend erkennen.

Unabhängig von der Lichtstärke bildet die Wellenlänge des Lichts eine unter Grenze für D. Beugungserscheinungen treten bei allen Wellenlängen auf. Rot wird etwas stärker als Blau gebeugt.

Bildgröße



Bildgröße bei der Lochkamera


Bezeichnet G die Gegenstandshöhe ( = tatsächliche Größe des betrachteten Gegenstandes), g die Gegenstandsweite (= Abstand des Gegenstandes von der Lochscheibe), b die Bildweite (= Abstand von der Lochscheibe zur Mattscheibe) und B die Bildhöhe (= Höhe des erzeugten Bildes auf der Mattscheibe), so gilt:


Diese Gleichung ist aus der geometrischen Optik auch als 1. Linsengleichung bekannt, sie gilt in gleicher Weise für fokussierende Kameras. Die Bildgröße hängt also nur von den Abständen ab, nicht jedoch von der Blendengröße bzw. Lochgröße.

Anwendungen


Spalte im Korbgeflecht erzeugen Sonnenbildchen links an der Wand.

Im Alltag beobachtet man zuweilen Abbildungen an kleinen Öffnungen. Das Bild rechts zeigt einen Korbstuhl, der seitlich von der Sonne beschienen wird und links an der Wand einen Schatten wirft. Die engen Spalte des Korbgeflechts erzeugen Lichtmuster auf der Wand in Form runder Scheibchen einheitlicher Größe. Hierbei handelt es sich um Abbilder der kreisförmigen Sonne, nicht etwa um Umrisse des Geflechts.

Ähnliches beobachtet man im Wald, wenn Zwischenräume in dichtem Blattwerk die Sonne auf dem Boden als verschwommene Kreisscheiben abbilden (sogenannte Sonnentaler). Wer den Grund dafür nicht kennt, ist dann sehr überrascht, dass bei einer partiellen Sonnenfinsternis diese Sonnentaler als „Halbmöndchen“ erscheinen.

Auch werden Lochblenden als abbildende Linsen für Röntgenstrahlung eingesetzt. Denn, anders als für sichtbares Licht, gibt es für diese kurzwellige Strahlung keine Materialien mit geeigneter Brechzahl, aus denen sich Linsen herstellen ließen.

Auswirkungen der Lichtbeugung


Beugungserscheinungen an der Lochblende setzen der klassischen Betrachtungsweise Grenzen. Der Durchmesser S des Unschärfeflecks vergrößert sich dadurch um den Durchmesser ΔS des Beugungsscheibchens. Für diesen gilt vereinfacht:



Dabei ist c eine Konstante, die hier mit ≈ 1 µm angenommen werden kann.

Nach der strahlenoptischen Betrachtung nimmt die Größe des Unschärfeflecks linear mit der Blendengröße ab (siehe oben). Die Lichtbeugung zeigt ein umgekehrtes Verhalten: Die Unschärfe verhält sich umgekehrt proportional zum Lochdurchmesser. Der optimale Durchmesser Dopt ist der Wert, für den beide zusammen am kleinsten sind. Die Extremwertsuche liefert:



Für g>>b gilt die Näherung: .

Mit c = 1 µm liefert die Formel den Wert für Dopt in Millimeter, wenn b in Meter eingesetzt wird.

Der optimale Durchmesser ist damit ein wenig kleiner als die innere Zone einer Fresnel-Zonenplatte.

Beispiele:

<table>
<tr>
<th> Bildweite <b>b</b> (Länge der Lochkamera)</th>
<td> Optimale Blendenöffnung <b>D<sub>opt</sub></b> für weit entfernte Objekte</td>
<td> Größe des Unschärfeflecks <b>S</b> für unendlich entfernte Objekte</td>
<td> Blendenzahl <b>b/D</b>
</td>
</tr>
<tr>
<th> 1 cm</th>
<td> 0,1 mm</td>
<td> 0,11 mm</td>
<td> 100</td>
</tr>
<tr>
<th> 10 cm</th>
<td> 0,32 mm</td>
<td> 0,63 mm</td>
<td> 312</td>
</tr>
<tr>
<th> 1 m</th>
<td> 1 mm</td>
<td> 2 mm</td>
<td> 1000</td>
</tr>
<tr>
<th> 10 m</th>
<td> 3,2 mm</td>
<td> 6,3 mm</td>
<td> 3100</td>
</tr>
</table>


Die „Optimierung“ bezieht sich hierbei ausschließlich auf die Bildschärfe! Die Lichtstärke dieser Kameras (abzulesen an der Blendenzahl in der letzten Spalte) ist sehr gering. Bei Belichtung auf Filmmaterial ist selbst bei hellem Sonnenschein der Schwarzschildeffekt zu berücksichtigen!


Vergleich zur fokussierenden Kamera

Im Vergleich zu denen einer fokussierenden Kamera sind die Bilder einer Lochkamera in der Regel unschärfer, da das Loch wegen der Lichtstärke und wegen der Lichtstreuung nicht beliebig klein gewählt werden kann. Bei großen Bildweiten (starken Vergrößerungen) lässt sich mit einer die Lochkamera jedoch ein besseres Auflösungsvermögen erreichen als mit einer fokussierende Kamera mit kurzer Brennweite. Außerdem sind ihre Bilder frei von Verzeichnungen und Farbsäumen

Schließlich ist zu beachten, dass bei einer fokussierenden Kamera bei einer gegebenen Fokussierung immer nur die Gegenstände in einer bestimmten Gegenstandsweite scharf abgebildet werden. Je nach der Blendenzahl nimmt die Schärfentiefe für davor oder dahinter liegende Gegenstände rasch ab. Dies ist jedoch nicht auf die Eigenschaften einer linsenlosen Kamera (Lochkamera) oder einer linsenbehafteten Kamera (in diesem Fall fokussierenden Kamera) zurück zu führen, sondern beruht auf dem (optischen Gesetz) Zerstreuungskreis.


Experimente



Foto, aufgenommen mit einer Lochkamera aus Beton


Das Funktionsprinzip einer Lochkamera sowie die Lichtausbreitung lassen sich gut mit einfachen, auch für Kinder geeigneten Experimenten verdeutlichen. Lochkameras lassen sich aus Streichholzschachteln, Getränke- oder Keksdosen bauen - aber selbst Wassertonnen oder Baucontainer kommen in Frage.

Zum Beispiel kann eine Kiste oder Dose innen matt geschwärzt und an einer Seite mit einem 0,2…1 mm großen Loch versehen werden. Ist die Lochkamera zum Betrachten von Bildern gedacht, so ist die Rückseite eine Mattscheibe (Transparentpapier), die durch eine Röhre oder ein Tuch vor Streulicht geschützt ist.

Man kann mit einem solchen Behälter aber auch wirklich fotografieren. Dazu wird bei absoluter Dunkelheit ein Film oder anderes lichtempfindliches Material auf der dem Loch gegenüberliegenden Innenwand fixiert und das Loch dann dicht verschlossen. Anschließend wird bei Helligkeit das Motiv gewählt, der Verschluss geöffnet und nach Ende der Belichtungszeit wieder verschlossen. Die Dauer der Belichtung ist (wie bei der herkömmlichen Fotografie) von vielen Faktoren abhängig: der vorhandenen Lichtintensität, der Größe des Lochs, der Länge des Lichtweges und der Bewegung des Motivs; sie kann zwischen 1 Sekunde und mehreren Minuten betragen. Bei der Entwicklung des Films entsteht ein Negativ, das ggf. durch eine Kontaktkopie zu einem Positiv verarbeitet werden kann. Für ein gutes Ergebnis ist eine exakte Rundung des Lochs wichtig. Ausgefranste Lochränder verstärken die oben beschriebene Lichtbeugung und führen zu unscharfen Bildern. Da bei größeren Bildwinkeln die Ränder des Negativs deutlich weniger Licht erhalten, bleiben sie (bei gleicher Helligkeit des Objektes) heller; das Positiv wird am Rande also dunkler. Wenn dieser Vignetteneffekt unerwünscht ist, muss man beim Umkopieren durch manuelles Abwedeln für eine gleichmäßige Belichtung sorgen.


AV1, zur Lochkamera umgebaut

Eine weitere Möglichkeit, sich eine Lochkamera selbst zu schaffen, besteht im einfachen Umbau eines analogen Fotoapparates. Dieser muß dazu lediglich über eine Wechseloptik verfügen, damit man das Objektiv vollständig entfernen kann, sowie eine Auslösemöglichkeit, bei der der Verschluss sich beliebig lange offenhalten lässt. Die Optik wird entfernt und durch eine Blindkappe ersetzt, die mit einer entsprechenden Bohrung versehen wird. Optimal ist ein kleiner Vorsatzhalter für verschiedene Lochblenden. Diese Konstruktion bietet den Vorteil, dass man mehr als nur „einen Schuss“ hat und den eingelegten Film (schwarz/weiss oder farbig) hinterher zum Entwickeln abgeben kann, also keine Dunkelkammer oder sonstiges Zubehör benötigt.


künstlerische Aspekte


Bestimmte Eigenschaften der Lochkamera-Fotografie haben Künstler schon immer fasziniert. Dazu gehört in erster Linie die grafisch-flächige Wirkung solcher Fotografien: durch die gleichmässig über das Bild verteilte Schärfentiefe tritt die räumliche Wahrnehmung des Objekts zurück - alles "wirkt wie gezeichnet". Ein weiterer Aspekt ist die Tatsache, dass sich schnell durch das Bild bewegende Objekte bei langen Belichtungszeiten nicht mehr auf dem Foto wiederfinden: es ist somit z. B. möglich, den Markusplatz in Venedig oder den Stachus in München völlig ohne Menschen oder Fahrzeuge abzulichten. Andererseits ergibt sich aus dieser Tatsache, dass eine Landschaftsaufnahme möglichst bei völliger Windstille erfolgen muss, wenn man keine Verwischungen in den Ästen der Bäume haben will. Der Effekt der Mehrfachbelichtung kann jedoch gerade bei Portrait-Aufnahmen gewünscht sein; es verleiht diesen Aufnahmen eine besondere Lebendigkeit.


Literatur


deutsch

  • Thomas Bachler: Arbeiten mit der Camera obscura, Lindemanns 2001, ISBN 3895062227
  • Reinhard Merz und Dieter Findeisen: Fotografieren mit der selbstgebauten Lochkamera, Augustus Verlag, Augsburg, 1997, ISBN 3-8043-5112-3
  • Peter Olpe: Die Lochkamera - Funktion und Selbstbau, Lindemanns Verlag, Stuttgart 1995, ISBN 3-928126-62-8 und Lochkamera. Lindemanns 2001. ISBN 3895061727
  • Ulrich Clamor Schmidt-Ploch. Die Lochkamera. Abbildungsoptimierung. Physikalische Hintergründe. BoD GmbH, Norderstedt 2001. ISBN 3831112614


englisch

  • John Warren Oakes: Minimal Aperture Photography Using Pinhole Cameras, ISBN 0819153702 & 0819153699


Bauanleitungen






Weblinks




Quelle

Teile des Artikels inkl. Bilder entstammen dem Artikel Lochkamera von de.wikipedia.org. Dort findest Du weitere informationen über Autoren, Urheberrecht und Lizenzen.

Kategorie:
Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 14:47   Titel: Tiefenschärfe

Die Tiefenschärfe ist ein Schärfebereich entlang der optischen Achse eines optischen Systems.

Bildlich ist diese z.B. bei Landschaftsaufnahmen erkennbar:

Objekte in mittlerer bis unendlicher Entfernung sind auf dem Foto scharf abgebildet, dann liegt der Tiefenschärfebereich in den mittleren bis unendlichen Entfernungen.
Objekte im Nah- bis Mittelbereich sind scharf abgebildet. Dann liegt die Tiefenschärfe zwischen Nah- und Mittelbereich.

Physikalischer Hintergrund:

Wenn wir eine Kamera ohne Linse betrachten, haben wir nur die Blende (unglaublich, aber früher gab es solche Kameras..."
Weiterhin betrachten wir der Einfacheit halber auch nur einen Objektpunkt, welcher als Objektpunkt auf den Film gebracht werden soll. Wenn die Blende weit offen ist, so hat das einfallende Licht bzw. Lichtstrahlen viele verschiedene Wege, um auf den Film zu treffen. Die Summe der Möglichkeiten bildet eine definierte Kreisfläche. Wenn wir die Blende nun schließen, dann verringern wir damit auch die Anzahl möglicher Wege für das Licht. Dadurch verringert sich die Kreisfläche, die Kreisfläche wird kleiner. Die Kreisflächen werden letztendlich so klein, daß sie für das menschliche Auge oder für den Film nicht mehr als Fläche wahrgenommen werden, sondern als "scharfe" Punkte.

Man kann also sagen, daß man auch ohne Linse fotografieren kann. Die Linse dient eigentlich nur zum Sammeln von Licht.

Nützlich ist der Effekt der Tiefenschärfe, wenn man keine Möglichkeit der Scharfstellung hat. So z.B. bei schlechten Licht oder sich schnell bewegenden Objekten. Man verkleinert die Blende so weit, daß der Tiefenschärfebereich so groß ist, daß man mit einer groben Fokusierung auskommt.

Gestalterisches Mittel:

-bei Landschaftsaufnahmen wird meist ein großer Schärfebereich bevorzugt
-bei portaits ist es oft nützlich, den Hintergrung unscharf zu stellen. Dadurch wird der Blick auf das Wesentliche, dem Portrait, konzentriert.

Wer das Glück hat, noch eine Kamera zu besitzen, welche über eine AbblendtasteVorblendtaste verfügt (das ist meist nur noch bei älteren Modellen der Fall), kann den Effekt der Tiefenschärfe sehr schön im sucher Beobachten und die sich ändernden Schärfenbereiche bei sich ändernder Blende sehr gut vergleichen.

Weblinks


Beitrag Forum: Fotowiki   Geschrieben: Sa, 29. Dec 2007 19:01   Titel: Fotografie

Fotografie

Wechseln zu: Suche








Das älteste erhaltene permanente Foto von Nicéphore Niépce von 1826



Als Fotografie oder Photographie (aus altgr. phos, Lich, Helligkeit und grapho, zeichnen, ritzen, malen, schreiben) bezeichnet man

  • ein technisches Verfahren, bei dem mit Hilfe von optischen Verfahren ein Lichtbild auf ein lichtempfindliches Medium projiziert und dort direkt dauerhaft gespeichert wird (analoges Verfahren) bzw. in elektronische Daten gewandelt und dann gespeichert wird (digitales Verfahren)
  • * das dauerhafte Lichtbild (umgangssprachlich kurz Foto genannt, auch Abzug, Vergrößerung oder Ausbelichtung), das durch fotografische Verfahren hergestellt wird; dabei kann es sich entweder um ein Positiv oder ein Negativ handeln




Definition


Als Fotografie bezeichnete man bis ins 20. Jahrhundert alle Bilder, welche rein durch Licht auf einer chemisch behandelten Oberfläche entstehen.

Die Fotografie ist ein Medium, das in sehr verschiedenen Zusammenhängen eingesetzt wird. Fotografische Abbildungen können beispielsweise Gegenstände mit primär künstlerischem (künstlerische Fotografie) oder primär kommerziellem Charakter sein (Industriefotografie, Werbe- und Modefotografie). Die Fotografie kann unter künstlerischen, technischen (Fototechnik), ökonomischen (Fotowirtschaft) und gesellschaftlich-sozialen (Amateur-, Arbeiter- und Dokumentarfotografie) Aspekten betrachtet werden. Des Weiteren werden Fotografien auch im Journalismus und in der Medizin verwendet.

Die Fotografie ist teilweise ein Gegenstand der Forschung und Lehre in der Kunstgeschichte und der noch jungen Bildwissenschaft. Der Kunstcharakter der Fotografie war lange Zeit umstritten, wird jedoch seit einigen Jahren zunehmend anerkannt. Einige Forschungsrichtungen ordnen die Fotografie der Medien- oder Kommunikationswissenschaft zu (zum Beispiel Werner Faulstich), auch diese Zuordnung ist aber umstritten.

Heutzutage ist mit der Digitalfotografie (oder Fotografie nach der Fotografie) und anderen fotografieähnlichen Bilderzeugungsmöglichkeiten eine neue Definitionsdiskussion entbrannt, die wohl noch einige Zeit die Geister scheiden wird.

Fotografie kann als Ausbildungsberuf (Fotograf), aber auch an Kunstakademien und Fachhochschulen oder autodidaktisch (Fotodesigner) erlernt werden (siehe Fotografische Organisationen). Die Fotografie unterliegt dem komplexen und vielschichtigen Fotorecht; bei der Nutzung von vorhandenen Fotografien sind die Bildrechte zu beachten.

Die Photographie ist eine wunderbare Entdeckung, eine Wissenschaft, welche die größten Geister angezogen, eine Kunst, welche die klügsten Denker angeregt – und doch von jedem Dummkopf betrieben werden kann (Nadar, 1856).


Fototechnik



Prinzipiell wird mit Hilfe eines optischen Systems, dem Objektiv,
fotografiert. Dieses projiziert das von einem Objekt
ausgesendete oder reflektierte
Licht auf ein lichtempfindliches Medium,
beispielsweise die lichtempfindliche Schicht eines
Films, und fixiert dieses als (latentes) Abbild darauf.




Objektiv einer Großformatkamera





Fotoapparat


Der fotografischen Aufnahme dient ein Fotoapparat oder eine Fotokamera. Durch Manipulation des optischen Systems (unter anderem die Einstellung der Blende, Scharfstellung, Farbfilterung, die Wahl der Belichtungszeit, der Objektivbrennweite, der Beleuchtung und nicht zuletzt des Aufnahmematerials) stehen dem Fotografen zahlreiche Gestaltungsmöglichkeiten offen. Als vielseitigste Fotoapparatbauform hat sich sowohl im Analog- als auch Digitalbereich die Spiegelreflexkamera durchgesetzt, allerdings werden für viele Aufgaben weiterhin die verschiedensten Spezialkameras benötigt und eingesetzt.



Lichtempfindliche Schicht


Bei der herkömmlichen Fotografie (Analogfotografie, Silber-Fotografie) ist die lichtempfindliche Schicht auf der Bildebene eine Dispersion (im allgemeinen Sprachgebrauch Emulsion). Sie besteht aus einem Gel, in dem gleichmäßig kleine Körnchen eines Silberhalogenids (zum Beispiel Silberbromid) verteilt sind. Je kleiner diese Körnchen sind, umso weniger lichtempfindlich ist die Schicht (siehe ISO 5800), umso besser ist allerdings die Auflösung („Korn“). Dieser lichtempfindlichen Schicht wird durch einen Träger Stabilität verliehen. Trägermaterialien: Zelluloseacetat, früher Zellulosenitrat (Zelluloid), Kunststofffolien, Metallplatten, Glasplatten, Textilien (siehe Film).

Bei der Digitalfotografie besteht das Äquivalent der lichtempfindlichen Schicht aus Chips wie CCD- oder CMOS-Sensoren.



Entwicklung und Fixierung


Durch das Entwickeln wird auf chemischem Wege das latente Bild sichtbar gemacht. Beim Fixieren werden die nicht belichteten Silberhalogenid-Körnchen wasserlöslich gemacht und anschließend mit Wasser herausgewaschen, so dass ein Bild auch bei Tageslicht betrachtet werden kann, ohne dass es nachdunkelt.

Ein weiteres älteres Verfahren ist das Staubverfahren, mit dem sich einbrennbare Bilder auf Glas und Porzellan herstellen lassen.

Ein digitales Bild muss nicht entwickelt werden; es wird elektronisch gespeichert und kann anschließend mit der elektronischen Bildbearbeitung am Computer bearbeitet und bei Bedarf auf Fotopapier ausbelichtet oder beispielsweise mit einem Tintenstrahldrucker ausgedruckt werden.



Geschichte der Fotografie


Siehe: Geschichte und Entwicklung der Fotografie

13. Jahrhundert


Der Name Kamera leitet sich vom Vorläufer der Fotografie, der Camera obscura („Dunkle Kammer“) ab, die bereits seit dem 11. Jahrhundert bekannt ist und Ende des 13. Jahrhunderts von Astronomen zur Sonnenbeobachtung eingesetzt wurde. Anstelle einer Linse weist diese Kamera nur ein kleines Loch auf, durch das die Lichtstrahlen auf eine Projektionsfläche fallen, von der das (auf dem Kopf stehende) Bild abgezeichnet werden kann. In Edinburgh und Greenwich bei London sind begehbare, raumgroße Camerae obscurae eine Touristenattraktion.

16. - 17. Jahrhundert

Ein Durchbruch ist 1550 die Erfindung der Linse, mit der hellere und gleichzeitig schärfere Bilder erzeugt werden können. 1685: Ablenkspiegel, ein Abbild kann so auf Papier gezeichnet werden.

18. Jahrhundert: Vorläufer und Vorgeschichte

Siehe auch Laterna magica, Panorama und Diorama. Chemiker wie Humphry Davy begannen bereits, lichtempfindliche Stoffe zu untersuchen und nach Fixiermitteln zu suchen.

19. Jahrhundert: Die frühen Verfahren

Die erste Fotografie wurde 1826 durch Joseph Nicéphore Nièpce angefertigt. 1837 benutzte Louis Jacques Mandé Daguerre ein besseres Verfahren, das auf der Entwicklung der Fotos mit Hilfe von Quecksilber-Dämpfen und anschließender Fixierung in einer heißen Kochsalzlösung oder einer normal temperierten Natriumthiosulfatlösung beruhte. Die auf diese Weise hergestellten Bilder, allesamt Unikate auf versilberten Kupferplatten, nannte man Daguerreotypien. Bereits 1835 erfand der Engländer William Fox Talbot das Negativ-Positiv-Verfahren. Auch heute werden noch manche der historischen Verfahren als Edeldruckverfahren in der Bildenden Kunst und künstlerischen Fotografie verwendet.

Im Jahr 1883 erschien in der bedeutenden Leipziger Wochenzeitschrift Illustrirte Zeitung das erste gerasterte Foto (Autotypie) in einem deutschen Presseorgan.

20. Jahrhundert: Die Formate werden kleiner


Fotografien konnten zunächst nur als Unikate hergestellt werden, mit der Einführung
des Negativ-Positiv-Verfahrens war auch eine Vervielfältigung im Kontaktverfahren möglich.
Die Größe des fertigen Fotos entsprach in beiden Fällen dem Aufnahmeformat, was in der
Regel sehr große, unhandliche Kameras
erforderte. Mit dem Rollfilm und insbesondere der von Oskar Barnack bei Leica entwickelten und 1924
eingeführten Kleinbildkamera, die den herkömmlichen 35-mm-Kinofilm verwendete, entstanden völlig
neue Möglichkeiten für eine mobile, schnelle Fotografie. Obwohl, durch das kleine Format bedingt, zusätzliche
Geräte zur Vergrößerung erforderlich wurden, und die Bildqualität mit den großen Formaten bei weitem nicht
mithalten konnte, setzte sich das Kleinbild in den meisten Bereichen der Fotografie als Standardformat durch.

Olympus 35 DC aus dem Jahre 1971






Ende des 20. Jahrhunderts: Einführung der Digitalfotografie


Die erste CCD (Charge-coupled Device) Still-Video-Kamera wurde 1970 von Bell konstruiert und 1972 melden Texas Instruments das erste Patent auf eine filmlose Kamera an, welche einen Fernsehbildschirm als Sucher verwendet.

1973 produzierte Fairchild Imaging das erste kommerzielle CCD mit einer Auflösung von 100 x 100 Pixel.

Dieses CCD wurde 1975 in der ersten funktionstüchtigen digitalen Kamera von Kodak benutzt. Entwickelt hat sie der Erfinder Steven Sasson. Diese Kamera wog 3,6 Kilogramm, war größer als ein Toaster und benötigte noch 23 Sekunden, um ein Schwarz-weiß-Bild mit 100x100 Pixeln Auflösung auf eine digitale Magnetbandkassette zu übertragen; um das Bild auf einem Bildschirm sichtbar zu machen, bedurfte es weiterer 23 Sekunden.

1986 stellte Canon mit der RC-701 die erste kommerziell erhältliche Still-Video-Kamera mit magnetischer Aufzeichnung der Bilddaten vor, Minolta präsentierte den Still Video Back SVB-90 für die Minolta 9000; durch Austausch der Rückwand der Kleinbild-Spiegelreflexkamera wurde aus der Minolta 9000 eine digitale Spiegelreflexkamera; gespeichert wurden die Bilddaten auf 2-Zoll-Disketten.

1987 folgten weitere Modelle der RC-Serie von Canon sowie digitale Kameras von Fujifilm (ES-1), Konica (KC-400) und Sony (MVC-A7AF). 1988 folgte Nikon mit der QV-1000C und 1990 bzw. 1991 Kodak mit dem DCS-System (Digital Camera System) sowie Rollei mit dem Digital Scan Pack. Ab Anfang der 1990er Jahre kann die Digitalfotografie im kommerziellen Bildproduktionsbereich als eingeführt betrachtet werden.

Die Technik der digitalen Fotografie revolutionierte auch die Möglichkeiten der digitalen Kunst, insbesondere durch die Technik der Fotomanipulation.

Auf der Photokina 2006 scheint die Zeit der Analogkamera endgültig vorbei zu sein.

Siehe auch: Chronologie der Fotografie, Geschichte der Fotografie, Edeldruckverfahren


Fotografie als Kunst


Der Kunstcharakter der Fotografie war lange Zeit umstritten; zugespitzt formuliert der Kunsttheoretiker Karl Pawek in seinem Buch "Das optische Zeitalter" (Olten / Freiburg i. Br. 1963, S. 58): „Der Künstler erschafft die Wirklichkeit, der Fotograf sieht sie.“

Auch der Fotograf Henri Cartier-Bresson, selbst als Maler ausgebildet, sah die Fotografie nicht als Kunstform, sondern als Handwerk: „Die Fotografie ist ein Handwerk. Viele wollen daraus eine Kunst machen, aber wir sind einfach Handwerker, die ihre Arbeit gut machen müssen.“ Gleichzeitig wurden gerade Cartier-Bressons Fotografien sehr früh in Museen und Kunstausstellungen gezeigt, so z. B. in der MoMa-Retrospektive (1947) und der Louvre-Ausstellung (1955).

Fotografie wurde bereits früh als Kunst betrieben (Julia Margaret Cameron, Lewis Carroll und Oscar Gustave Rejlander in den 1860ern). Erstmals trat die Fotografie in Deutschland in der Werkbund-Ausstellung 1929 in Stuttgart in beachtenswertem Umfang an die Öffentlichkeit, auch schon mit internationalen Künstlern wie Edward Weston, Imogen Cunningham und Man Ray; spätestens seit den MoMa-Ausstellungen von Edward Steichen (The Family of Man, 1955) und John Szarkowski (1960er) ist Fotografie als Kunst allgemein anerkannt.

Heute ist Fotografie als vollwertige Kunstform akzeptiert: Indikatoren dafür sind die wachsende Anzahl von Museen, Sammlungen und Forschungseinrichtungen für Fotografie, die Zunahme der Professuren für Fotografie sowie nicht zuletzt der gestiegene Wert von Fotografien in Kunstauktionen und Sammlerkreisen. Zahlreiche Gebiete haben sich entwickelt, so die Landschafts-, Akt-, Industrie-, Theaterfotografie u. a. m., die innerhalb der Fotografie eigene Wirkungsfelder entfaltet haben. Daneben entwickelt sich die künstlerische Fotomontage zu einem der malenden Kunst gleichwertigen Kunstobjekt. Eine besondere Kunstform der Fotografie sind Schattenbilder.



Fotografen



Die Fotografie als Objekt der Kunstwissenschaft wurde geprägt durch herausragende Fotografinnen
und Fotografen wie beispielsweise - ohne Wertung quer durch die Zeit- und Stilgeschichte der
Fotografie - W. H. Talbot, E. S. Curtis, Henri Cartier-Bresson, Ansel Adams, August Sander vor
dem 2. Weltkrieg, Otto Steinert, Richard Avedon, Diane Arbus und unzählige andere bis hin zu
"Modernen" wie Helmut Newton, Walter E. Lautenbacher, Thomas Ruff, Jeff Wall, Andreas Gursky

und Gerhard Vormwald. Mit jedem dieser berühmten Fotografen ist eine bestimmte Zeit, eine bestimmte
Auffassung von Fotografie, ein persönlicher Stil - möglicherweise innerhalb eines bestimmten Fachgebietes der
Fotografie - und eine eigene Thematik verbunden.
Fotograf im Studio, um 1850

Einige Fotografen organisierten sich in Künstlergruppen wie f/64 um Edward Weston in den USA in der
ersten Hälfte des 20. Jh. oder arbeiteten zusammen in Foto- oder Bildagenturen wie Magnum Photos oder
Bilderberg, andere arbeiten dagegen bevorzugt alleine.


Oft sind künstlerisch bekannte Fotografen in ihrem "Brotberuf" eher unauffällig und durchschnittliche
"Handwerker", erst in ihren freien Arbeiten treten sie mit Ausstellungen oder durch Preisverleihungen in den Blickpunkt der Öffentlichkeit. Als Beispiel seien nur der Modefotograf Helmut Newton, der Werbefotograf Reinhart Wolf und der Landschafts- und Architekturfotograf Robert Häusser genannt: sie wurden mit völlig anderen Sujets als denen ihrer täglichen Arbeit bekannt, nämlich Aktfotografie, Food- und Architekturfotografie und mit künstlerischer eigenwilliger Schwarz-weiß-Fotografie.

Die Fotografie ist jedoch keine exklusive Kunstform, sondern wird auch von zahllosen Amateurfotografen betrieben; die Amateurfotografie ist der Motor der Fotowirtschaft und Motivation für die Produktion der allermeisten Bilder, deren Zahl weltweit monatlich in die Milliarden geht.

Siehe auch: Liste bedeutender Fotografen


Theorie und Praxis


Die Fotografie wird in zahlreichen Einzeltheorien diskutiert, eine einheitliche und umfassende Theorie der Fotografie existiert jedoch bisher nicht. Die Fotopraxis ist gekennzeichnet durch die gestalterische Gratwanderung zwischen der fotografischen Technik und der gewünschten Bildaussage; sie hat sich in den vergangenen rund sechzig Jahren differenziert und umfasst zahllose Bereiche von Schnappschussfotografie und Urlaubsfotografie über Luftbildfotografie und wissenschaftliche Fotografie bis hin zu Studiofotografie, spiritistischer Fotografie und digitaler Kunst.

Besondere Bereiche der Fotografie










Die Landschaftsfotografie ist ein bedeutendes Genre der Fotografie.

Die Fotografie lässt sich in verschiedene Stilrichtungen und nach technischen Unterschieden aufteilen. Einteilungen sind beispielsweise möglich nach

  • dem verwendeten Gerät (Lochkamera, Sucherkamera, Spiegelreflexkamera, Sofortbildkamera, Digitalkamera, Fachkamera auf optischer Bank oder Laufbodenkamera etc.: Kleinbildfotografie, Mittelformatfotografie, Großformatfotografie, Digitalfotografie usw.)
  • der Farbwiedergabe der Abbildung: Schwarz-weiß-Fotografie und Farbfotografie
  • der Art der Motivwahl und Motivation (Familienfotografie, Stillleben, Reportagefotografie, sozialdokumentarische Fotografie, Portraitfotografie, Aktfotografie, Kriegsfotografie, Werbefotografie, Bühnenfotografie, Architekturfotografie, Naturfotografie, Kinderfotografie, Reisefotografie, Partyfotografie, usw.)
  • dem technisch-gestalterischen Grundkonzept, wie zum Beispiel Low-key-Fotografie, High-key-Fotografie, abstrakte Fotografie, Lomografie
  • dem verwendeten Film- oder Negativformat (Kleinstbildformat, Kleinbildformat, Mittelformat, Großformat)
  • der Art der Nachbehandlung (Virage)


Es gibt einige Bereiche der Fotografie, in denen zum Teil mit besonderen Gerätschaften oder besonderen Filmen gearbeitet wird oder in denen Probleme auftreten, mit denen der "normale" Fotograf nicht konfrontiert wird. Hierzu zählen u. a. die









Röntgenfotografie


  • Aktfotografie
  • Amateurfotografie
  • Architekturfotografie
  • Astrofotografie
  • Edeldruckverfahren
  • Falschfarbenfotografie
  • Fotomosaik
  • Hochgeschwindigkeitsfotografie
  • Holografie
  • Infrarotfotografie
  • Kirlianfotografie
  • Kontaktradiografie
  • Landschaftsfotografie
  • Lomographie
  • Luftbildfotografie
  • Laufbildfotografie
  • Nachtfotografie
  • Naturfotografie
  • Portraitfotografie
  • Studiofotografie
  • Panoramafotografie
  • Röntgenfotografie
  • Satellitenfotografie
  • Schlierenfotografie
  • Sportfotografie
  • Tierfotografie
  • Unterwasserfotografie
  • Ultraviolettfotografie



Siehe auch


[list[*]Bildagentur
[*]Frozen Reality
[*]Pressefoto des Jahres
[*]Photographica
[/list]


Literatur


Bücher

  • Jost J. Marchesi: Handbuch der Fotografie. Band 1-3 im Schuber. Gilchingen: Verlag Photographie, Januar 2006. - ISBN 3-933131-77-4 (Rezension, Leseproben: [1])
  • Ansel Adams, Die Kamera, Christian 2002 - ISBN 388-472-070-8
  • Ansel Adams, Das Negativ, Christian 1998 - ISBN 388-472-071-6
  • Ansel Adams, Das Positiv, Christian 1998 - ISBN 388-472-072-4
  • Roland Barthes, Die helle Kammer. Bemerkung zur Photographie, Frankfurt am Main: Suhrkamp 1994/2005 ISBN 351-838-142-3
  • Walter Benjamin, Das Kunstwerk im Zeitalter seines technischen Reproduzierbarkeit (neben Barthes eines "der" Standardwerke)
  • Pierre Bourdieu, Eine illegitime Kunst: die sozialen Gebrauchsweisen der Photographie, Frankfurt am Main: Suhrkamp 1983 /Europäische Verlagsanstalt 2006 ISBN 343-446-162-0
  • Bernd Busch, Belichtete Welt: eine Wahrnehmungsgeschichte der Fotografie, München: Hanser 1989, ISBN 344-615-089-7
  • Gisèle Freund, Photographie und Gesellschaft, Reinbek bei Hamburg: Rowohlt 1993 / 2002, ISBN 349-917-265-8
  • Judith Freyer Davidov, Women's Camera Work: Self/Body/Other in American Visual Culture, Duke University Press 1998
  • Stefan Hartwig, Gestaltung und Wahrnehmung von Public Relations-Bildern. Lehren aus der Wissenschaft. In: www.gpra.de
  • Wolfgang Kemp (Hrg.), Theorie der Fotografie, Gesamtausgabe in einem Band, Schirmer/Mosel 2006, ISBN 382-960-239-1
  • Hans-Michael Koetzle, Das Lexikon der Fotografen: 1900 bis heute, München: Knaur 2002, ISBN 342-666-479-8
  • Reinhold Mißelbeck: Prestel-Lexikon der Fotografen : von den Anfängen 1839 bis zur Gegenwart ; mit Glossar. München u.a.: Prestel 2002 (287 S.)
  • Beaumont Newhall, Geschichte der Photographie, Schirmer, Mosel, München 1998 / 2005 ISBN 388-814-319-5
  • (Franz-Xaver Schlegel) Das Werk. Technische Lichtbildstudien (1931). Vorbemerkung von Eugen Diesel (1931). Neudruck der Erstausgabe 1931 nebst Materialien zur Editionsgeschichte. Einführender Essay von Franz-Xaver Schlegel (2002). Hrsg. von der Albertina, Wien. Königstein i. Ts. 2002 (= Die Blauen Bücher). ISBN 3-7845-3560-7
  • Willy Puchner, Gestaltung mit Licht, Form und Farbe, München 1981, ISBN 3-87467-207-7
  • Franz-Xaver Schlegel, Das Leben der toten Dinge - Studien zur modernen Sachfotografie in den USA 1914-1935, 2 Bände, Stuttgart: Art in Life 1999, ISBN 300-004-407-8
  • Sigrid Schneider und Stefanie Grebe, Wirklich wahr!: Realitätsversprechen von Fotografien, Ostfildern-Ruit : Hatje Cantz], 2004
  • Susan Sontag, Ãœber Fotografie, Wien: Hanser 2002
  • Susan Sontag, Das Leiden anderer betrachten , Frankfurt am Main: Fischer 2005
  • Tom! Striewisch, Der große Humboldt Fotolehrgang, Humboldt-Verlag 2005 - ISBN 389-994-017-2
  • Therese Mulligan, David Wooters, Geschichte der Photographie - Von 1839 bis heute. 25 Jahre Taschen. Jubiläumsausgabe, Taschen-Verlag 2005 - ISBN 382-284-775-5


Zeitschriften

  • Fotogeschichte
  • EIKON. Internationale Zeitschrift für Photographie und Medienkunst
  • Photographie




Weblinks






Siehe auch


Forum bei optisches-werk.de

Quelle: de.wikipedia.org Artikel: Fotografie Dort findest Du Infos über Autoren und Lizensen.



Kategorien:
Beitrag Forum: Fotowiki   Geschrieben: Sa, 29. Dec 2007 18:55   Titel: Digitalfotografie

Digitalfotografie

Wechseln zu: Suche

Als Digitalfotografie wird zusammenfassend die Fotografie mit Hilfe eines digitalen Fotoapparats oder die Arbeit mit digitalisierten Bildern sowie die sich daran anschließende Weiterverarbeitung mittels elektronischer Bildbearbeitung sowie digitaler Präsentation und Archivierung bezeichnet.

Die Digitalfotografie weicht in zahlreichen Aspekten von der klassischen optochemisch basierten Fotografie ab und ähnelt, insbesondere bei der Bildwandlung, einerseits der Videotechnik, andererseits den bildgebenden Verfahren.












Sony Mavica FD5



Bilderzeugung

Bildwandlung

In der Digitalfotografie gibt es – von Hybridverfahren wie der Kodak Photo CD abgesehen – keinen chemischen Film mehr; zur Wandlung der Lichtwellen in digitale Signale werden Halbleiter-Strahlungsdetektoren in CCD- oder CMOS-Technik als Bildsensoren verwendet. Bei dieser Digitalisierung eines analogen Bildes handelt es sich um eine Bildwandlung, bei der eine Diskretisierung (Zerlegung in Bildpunkte) und Quantisierung (Umwandlung der Farbinformation in einen digitalen Wert) des analogen Bildes durchgeführt wird.

Hybridverfahren

Eine Ãœbergangslösung zwischen analoger und digitaler Fotografie stellt die Fotografie mit dem klassischen "Silberfilm" dar, bei der anschließend das Negativ oder Positiv zunächst mit einem Scanner digitalisiert wird und dann das gespeicherte Bild digital weiterbearbeitet wird.

Die manuellen Arbeitsschritte kann man sich sparen, wenn man vom industriellen Fotolabor eine Kodak Photo CD herstellen lässt; dabei wird der – noch ungeschnittene – Filmstreifen direkt im Anschluss an die Entwicklung mit professionellen Scannern in hoher Qualität digitalisiert und auf eine CD gebrannt. Als kostengünstigere Alternative sind etwa seit 1999 sogenannte Picture Discs von verschiedenen Anbietern auf dem Markt, auf denen die Aufnahmen mit geringerer Auflösung im verlustbehafteten JPG-Format gespeichert werden. Die Qualität der Picture Disks ist in der Regel jedoch nicht für eine Weiterverarbeitung ausreichend, sondern nur zur Vorbetrachtung geeignet.

Kamerainterne Bildverarbeitung


Jede Digitalkamera führt nach oder bereits während der Bildwandlung eine Reihe von Verarbeitungsprozessen wie Weißabgleich, Erhöhung der Farbsättigung, Anheben des Kontrasts, Tonwertkorrektur, Filterung, Schärfen, verlustbehaftete Komprimierung usw. durch; Consumer-Kameras schärfen auch dann noch nach, wenn man diese Funktion abgeschaltet hat (vgl. Andrea Trinkwalder, Raw-Masse. Höhere Farbtiefe, weniger Fehler: Bessere Bilder dank Rohdaten).

Um auf das vollkommen unbearbeitete Bild zuzugreifen empfehlen sich hochwertige Kameras, die ohne jeglich interne Kameraverarbeitung Schärfung, Datenreduktion etc. den kompletten Datensatz des Sensors als Kopie im RAW-Bild speichern.


Bildeigenschaften


Seitenverhältnis

Die meisten Digitalkameras speichern Bilder mit einem Seitenverhältnis von 1,33 (4:3). Dies hat historische Gründe: Die ersten Digitalkameras waren auf existierende Sensoren angewiesen und da 4:3 dem Seitenverhältnis der verbreiteten Computermonitore und Fernsehnormen NTSC, PAL und SECAM entspricht (was wiederum von den frühesten Kinofilmen herrührt), waren überwiegend Sensoren mit diesem Seitenverhältnis verfügbar. Inzwischen werden Sensoren mit dem Seitenverhältnis 3:2 speziell für Digitalkameras entwickelt und zumeist in digitalen Spiegelreflexkameras eingesetzt. Panasonic bietet Kameras an, die mit Bildwandlern im Format 16:9 ausgerüstet sind, und durch Weglassung von Bildspalten in der Lage sind, zusätzlich auch die Bildformate 3:2 und 4:3 zu unterstützen.

In der Ausbelichtung hat ein Seitenverhältnis von 4:3 die Konsequenz, dass das Bild bei Verwendung der herkömmlichen 3:2-Papierformate (z.B. 10x15 cm) entweder oben und unten beschnitten wird oder links und rechts weiße Streifen auftreten. Daher werden heutzutage meist Papierformate mit den Seitenverhältnissen 4:3 verwendet. Hierbei wird dann zum Beispiel oft von einem 10er-Format gesprochen, um anzuzeigen welche Höhe der Abzug aufweist; die Breite des Abzugs ergibt sich dann entsprechend dem Seitenverhältnis. Diese Papierformate weichen zwar von den klassischen Papierformaten (Abzügen) ab, der Abzug zeigt jedoch unbeschnitten das komplette Bild. Ein Abzug im 10er-Format mit den Seitenverhältnissen 4:3, ist 10x13,33 cm groß und passt mit den oben beschriebenen Einschränkungen nur bedingt in die üblichen Bilderrahmen.

Pixelanzahl und Auflösung

Als Bildauflösung bezeichnet man die Anzahl der Bildpunkte, Pixel genannt, in Breite und Höhe eines digitalen Bildes; bei 1600 x 1200 Pixeln ergibt sich also beispielsweise eine Auflösung von 1,92 Megapixeln.

Die Herstellerangaben zur Pixelanzahl müssen kritisch interpretiert werden, da sie nicht die tatsächlich vorhandene Anzahl an Farbpixeln wiedergeben. Bei dem weit verbreiteten Bayer-Sensor ist dies die Anzahl der einfarbigen Pixel, für den Foveon-X3-Sensor die Anzahl der lichtempfindlichen Elemente multipliziert um den Faktor drei.

Daher ist es nicht möglich, die Pixelanzahl der verschiedenen Sensortypen direkt miteinander zu vergleichen; nach Schätzungen liefert ein Bayer-Sensor mit sechs Megapixeln etwa dieselbe Auflösung wie ein Foveon-X3-Sensor mit 10 Megapixeln. Einen weiteren proprietären Sensor verwendet Fujifilm, siehe Super-CCD-Sensor.

Die Auflösung digitaler Bilder ist nur eingeschränkt mit der Auflösung eines Filmnegativs oder Prints zu vergleichen, da sie u. a. vom Betrachtungsabstand und der Art der Darstellung (Bildschirm, Print) abhängig ist.

Auf normales Fotopapier ausbelichtete Digitalfotos erreichen die Qualität von konventionellen Papierabzügen – hier entscheidet vielmehr die verwendete Kamera, das Objektiv sowie eine Reihe weiterer Faktoren über die technische Bildqualität.

Die Pixelanzahl gibt auch nur näherungsweise die Auflösung feiner Strukturen wieder. Bei der Digitalisierung gilt das Nyquist-Shannon-Abtasttheorem. Danach darf die maximale im Bild auftretende Frequenz maximal halb so groß sein, wie die Abtastfrequenz, weil es sonst zu unerwünschten Bildverfälschungen, zum Beispiel zu Moiréerscheinungen, kommt und das Originalsignal nicht wieder hergestellt werden kann.

Eine weitere Einschränkung der Vergleichbarkeit konventioneller und digitaler Aufnahmen ergibt sich aus der Tatsache, dass es sich beim Filmkorn - technisch betrachtet - um ein stochastisches, also ein völlig zufälliges und unregelmäßiges Rauschen handelt, das bei technisch gleicher Auflösung meist weitaus weniger störend wirkt als das strikt regelmäßige Pixelmuster digitaler Aufnahmen. Dieses Pixelmuster hingegen kann durch geeignete Software nach Kalibrierung auf den jeweiligen Sensor perfekt entfernt werden, was bei chemischem Film wiederum erneut nicht möglich ist. Visuell wirken somit "analoge" Bilder mit sichtbarem Korn - bei gleichem Informationsgehalt - entweder erträglicher oder gestört.

In der Praxis bedeutet das, dass man vor der Digitalisierung die maximale Frequenz kennen oder herausfinden muss und dann das Signal zwecks Digitalisierung mit mehr als der doppelten Frequenz abgetastet werden muss. Bei der Digitalfotografie kann man, um die Moireerscheinungen von vornherein zu vermeiden, die Optik leicht unscharf stellen. Das entspricht einem Tiefpass. Wenn die Pixelzahl des Sensors erhöht wird, muss die Optik neu angepasst werden, weil sonst die erhöhte Pixelzahl nicht ausgenutzt werden kann.

Beim Scannen gerasterter Bilder muss man die Auflösung ebenfalls so groß wählen, dass die feinsten Strukturen des Rasters dargestellt werden können. Anschließend kann man entrastern (dazu gibt es unterschiedliche Funktionen) und dann die Auflösung herabsetzen.

Spoiler: [ Anzeigen ]


Dateiformat


Bei der Digitalfotografie entstehen in jedem Fall Daten, die in der Regel elektromagnetisch oder optisch gespeichert werden; dies geschieht meist in einem standardisierten Grafikformat. Aktuelle Digitalkameras verwenden JPEG, einige besser ausgestattete auch das Rohdatenformat und TIFF. Bei den Hybridverfahren wie der Kodak Photo CD entstehen ImagePacs, beim Scannen hat man meist eine größere, freie Auswahl über das Speicherformat.

Für maximale Bildqualität in der Nachbearbeitung empfiehlt sich das unkomprimierte Rohdatenformat. Hier werden die unbearbeiteten Bildsensordaten unkomprimiert gespeichert. Dieses Format bedarf größerer Mengen Speicherplatz und wird insbesondere im professionellem Umfeld angewendet.

JPEG ist dagegen verlustbehaftet, kann aber je nach Kompressionsgrad sehr speicherökonomisch, unter günstigen Umständen aber auch sehr nah am Original sein. JPEG2000 beherrscht mittlerweile die verlustlose Komprimierung und einen größeren Farbraum, wird aus Lizenzgründen aber kaum unterstützt. Der Fotograf muss also bereits vor dem Fotografieren eine Entscheidung über den Kompressionsgrad und damit über den möglichen Detailreichtum etcetera fällen. Eine vergleichbare Vorabentscheidung trifft der analog Fotografierende mit der Auswahl des Filmmaterials und der Filmempfindlichkeit, und muss das Filmmaterial wechseln um beispielsweise eine andere Lichtempfindlichkeit oder Filmkörnigkeit zu erreichen.

Es gibt nach wie vor viele proprietäre Dateiformate, die nicht mehr ohne weiteres gelesen werden können, wenn die entsprechende Software nicht mehr verfügbar ist. Daher sollte insbesondere bei den Rohdatenformaten bedacht werden, dass diese nach einigen Jahren unter Umständen konvertiert werden müssen. Eine Möglichkeit diese Probleme zu veringern, besteht in der Umwandlung in ein offenes oder verbreitetes Dateiformat, wie beispielsweise Portable Network Graphics (PNG) oder Digital Negative (DNG).

Meta-Informationen


Zu den Vorteilen der digitalen Bildspeicherung gehört die Möglichkeit, umfangreiche Meta-Informationen in der Datei zu speichern; diese Zusatzfunktion ist im Exchangeable Image File Format (Exif) standardisiert, das es jedoch inzwischen in mehreren Varianten gibt.

Bereits das Hybridsystem APS verfügte über noch vergleichsweise eingeschränkte Möglichkeiten der Speicherung von Meta-Informationen, und auch bei Kleinbildkameras ist das Einbelichten von Zeit- und Datumsangaben sowie der Bildnummer auf den Filmstreifen möglich, wenn die Kamera über eine entsprechende Funktion verfügt. Die analogen Kleinbild-Spiegelreflexkameras Minolta Dynax 9xi und Minolta Dynax 9 verfügen über eine Möglichkeit, zahlreiche Aufnahmeparameter zu speichern und in eine Textdatei ausgeben zu können; allerdings ist der Grad der Integration sowie insbesondere die Zuordnung des jeweiligen Datensatzes zu einem bestimmten Bild eines bestimmten Filmes nicht unproblematisch.

Bei den in die digitale Bilddatei eingebetteten Exif-Daten ist zu beachten, dass einige unzureichende Programme diese Daten bei einer Bildbearbeitung nicht erhalten; dies betrifft z.B. ältere Versionen der Bildbearbeitungssoftware Adobe Photoshop. Natürlich muss man für korrekte Exif-Daten auch daran denken, bei einem Wechsel der Zeitzone die kamerainterne Uhr umzustellen, sonst erhält man unbrauchbare Zeit- und ggf. auch Datumsangaben.


Digitale Aufnahmetechnik


Kameras und Kamerasysteme

Analoge Kameras und Kamerasysteme wurden über Jahrzehnte entwickelt, gepflegt und optimiert; bevor ihre Weiterentwicklung bei den marktführenden Herstellern in den letzten Jahren eingestellt wurde.

Die Bedienung der meisten analogen Kleinbildkameras war ähnlich - wobei Autofokus, Intervallometer, Belichtungsmessung etc. je nach Hersteller deutlich varierte. Die Benutzung von Tasten und Menüsystemen bei Digitalkameras kann deutlich umfassender und komplexer sein und erfordert weiteres Knowhow über das photochemische hinaus - da viele digitale Kameras zahlreiche Funktionen mehr bieten als ihre mechanischen Vorgänger. Bei der Digitalfotografie ist damit zu rechnen, dass der Fotograf bei jedem Systemwechsel neue Dinge erlernen kann, während die Grundlagen stets gleichbleiben - wie Blende, Brennweite, Verschlusszeit etc.

Ähnliches gilt für die System- und Modellpflege; während die klassischen höherpreisigen Kamerasysteme der großen Kamerahersteller, z.B. Nikon, Canon, Pentax über Jahrzehnte unter Beibehaltung einer herstellerspezifischen Kompatibilität gepflegt wurden, gibt es vergleichbares bei digitalen Spiegelreflexkameras. Aufgrund der Modellwechsel bei Digitalkameras ist bei billigen Geräten Zubehör für eine Kamerageneration oder noch für einige Nachfolgemodelle benutzbar.

Einige Hersteller von Digitalkameras wie Hasselblad führten zusammen mit ihren digitalen Kameras auch vollkommen neue Systeme ein, welche wiederum als System ausgerichtet sind.

[b]Digitale Kamerarückwände[b/]

Digitale Bilder können nicht nur mit nativen Digitalkameras oder durch Digitalisieren analoger Vorlagen, sondern auch mit einer digitalen Kamerarückwand angefertigt werden.

Scan Backs funktionieren nach dem Prinzip eines Flachbettscanners; es wird dabei zwischen Single-shot- und Multi-Shot-Verfahren unterschieden.

Objektive


Da heutige Digitalkameras meist Sensoren mit einer gegenüber den klassischen Filmformaten geringeren Fläche aufweisen, verändert sich effektiv die Wirkung der Brennweite des Objektivs. Gegenüber dem Kleinbildfilm ändert sich die Brennweite nicht wirklich, aber der Abbildungsmaßstab des Bildes ändert sich in dem Verhältnis, in dem er sich bei analogen Kameras ändern würde, wenn die Brennweite um den entsprechenden Faktor geändert würde. Dies bedeutet, dass die Brennweite eines Normalobjektivs bei einer Digitalkamera den Effekt eines leichten Teleobjektivs hervorruft. Dies freut zwar den Naturfotografen, führt jedoch zu Problemen für Freunde des Weitwinkelobjektivs: Es ist sehr aufwendig, verzerrungsarme Superweitwinkelobjektive für Digitalkameras zu konstruieren. Dementsprechend teuer sind diese Objektive. Auch verändert sich der Bereich der Schärfentiefe bei gleicher tatsächlicher Brennweite im Vergleich zu analogen Modellen.

Der Formatfaktor der Kamera wird entweder im Datenblatt der Kamera oder des Objektivs angegeben, oder die "effektive" Brennweite wird analog zu Kleinbild angegeben. Besitzer von digitalen Spiegelreflexkameras müssen die "effektive" Brennweite ihrer Wechselobjektive dagegen selbst berechnen, da dieser nicht auf den Objektiven selbst angegeben ist, denn diese Objektive können meist auch auf herkömmlichen Kleinbild-Spiegelreflexkameras eingesetzt werden. Der Formatfaktor liegt hier in der Regel zwischen 1,5 und 2.


Digitale Aufnahmepraxis


Die digitale Aufnahmepraxis weist gegenüber der konventionellen Fotografie einige Besonderheiten auf.

Bildgestaltung


Als Beispiel sei hier die Veränderung der Schärfentiefe erwähnt, die sich aus dem Formatfaktor ergibt (oft fälschlich Brennweitenverlängerung genannt: Die Brennweite eines Objektivs ändert sich jedoch nicht, nur dessen genutzter Bildwinkel durch das veränderte Aufnahmeformat); Objektive, die in der Kleinbildfotografie als Weitwinkel gelten, treten bei den meisten Digitalkameras als Normalobjektiv auf. Da sich die optischen Gesetzmäßigkeiten nicht verändern, nimmt die effektive Schärfentiefe (genauer: der Schärfebereich) des Bildes zu. Mit Digitalkameras ist es daher schwerer als in der Kleinbildfotografie, einen in Unschärfe zerfließenden Bildhintergrund zu erzielen, wie er beispielsweise in der Porträt- und Aktfotografie zur Hervorhebung häufig erwünscht ist. Einige moderne Spiegelreflex-Digitalkameras verfügen bereits über einen vollformatigen Sensor (24x36mm). Diese Kameras verhalten sich genauso wie analoge Kleinbild-Spiegelreflexkameras.

Spezialfunktionen

Viele Digitalkameras bieten dreh- oder schwenkbare Displays, mit denen einige Aufnahmetechniken komfortabler als mit herkömmlichen Kameras machbar sind. Hierzu gehören beispielsweise Aufnahmestandpunkte in Bodennähe, wie sie häufig in der Makrofotografie benötigt werden oder Aufnahmen "über Kopf", um über eine Menschenmenge hinweg zu fotografieren.

Aktuelle Digitalkameras (Stand: 2004) bieten fast ausnahmslos die Möglichkeit der Aufzeichnung kurzer Videoclips von etwa einer Minute im Format QQVGA oder QVGA, teilweise auch mit Ton. Tendenziell ist eine Entwicklung der digitalen Fototechnik zu beobachten, immer weiter mit der Videotechnik zu konvergieren; in Spitzenmodellen ist die Länge der Videoclips nur noch durch die Kapazität des Speichermediums begrenzt; die Bildauflösung liegt dabei im Bereich der Qualität von VHS oder bereits deutlich darüber (VGA, 640 x 480 bzw. PAL, 720 x 576).

Elektronische Bildbearbeitung

Neben der automatisch durch die Kamera durchgeführte Bildverarbeitung eröffnet die Digitalfotografie zahlreiche Möglichkeiten der Bildmanipulation und -optimierung durch die elektronische Bildbearbeitung, die über konventionelle Bildretusche und Ausschnittsvergrößerung weit hinausgehen.

Beispielsweise können aus einer Folge von Einzelbildern komfortabel Panoramafotos montiert, Bildhintergründe ausgetauscht oder Personen aus Bildern entfernt oder hineinkopiert werden.

Speicherung und Archivierung

Als Vorteile gegenüber der chemischen Fotografie wird häufig die entfallende Filmentwicklung sowie die scheinbar einfache, günstige und platzsparende Archivierbarkeit angeführt. All dies erfordert jedoch entsprechende technische Mittel (Computer, Software, CD- oder DVD-Recorder etc.), technische Fähigkeiten und letztlich doch enormen Platz ...und viel Zeit vor dem Computer.

Tatsächlich ist, anders als bei Film, die verlustfreie Langzeitarchivierung digitaler Bilder theoretisch perfekt möglich.

Der Hauptvorteil digitaler Daten ist hierbei, das anders als bei photochemischen Film exakt identische Kopien erzeugt werden können und auf die verschiedensten Speicherorte und Medien verbracht werden können - anders als bei Film, wo es nur ein Original geben kann und alle Kopien verändert und schlechter werden, können digitale Originale, Fehlerfreiheit und Lesbarkeit vorausgesetzt, beliebig oft verlustfrei vervielfältigt werden.

Auch kann eine Kopie des digitalen Archivs in Masterqualität weltweit abrufbar sein, beispielsweise durch eine identische Kopie auf einem Webserver, während Filmarchvmaterialien durch Handhabung und insbesondere unsachgemäße Benutzung leicht verschleissen. Deswegen werden grade in der kommerziellen Nutzung auch heute chemische Filme digitalisiert, um diese Vorzüge etwa im Verlagswesen und der Photoverwertung einzusetzen.

Ein weitere Vorteil digitaler Daten liegt im scheinbar geringem Platzbedarf - gerade große professionelle Archive mit mehreren Millionen Photos können jetzt relativ kompakt archiviert werden. Auch die Indexierung erscheint erleichtert.

Die Langzeitarchivierung digitaler Daten erfordert jedoch einen mit der Zeit steigenden Aufwand um die Datenträgersicherheit, die Fehlerfreiheit sowie die Lesbarkeit der Daten sicherzustellen. Ein zum Teil ungelöstes logistisches, finanzielles und technisches Problem.

In der analogen Fotografie weisen unter vergleichbar günstigsten Bedingungen gelagerte Kodachrome-Dias auch nach 80 Jahren nur geringe Alterungserscheinungen auf; jedoch belichten wenige Nutzer auf Dia aus, um digitale Aufnahmmen zu archivieren.

In der Digitalfotografie wird ein erheblicher Umkopier- und Konvertierungsaufwand betrieben werden müssen, um eine vergleichbare Langzeitarchivierbarkeit und Stabilität zu erreichen.

Speichermedien zum Fotografieren







Drei Ansichten einer CompactFlash-I-Karte

Als Speichermedien werden in der Digitalfotografie hauptsächlich Speicherkarten verwendet. Folgende sind hier gebräuchlich:

  • Memory Stick (MS)
  • Compact-Flash (CF) Karten,
  • Smart Media Karten (SM),
  • Secure Digital Memory Card (SD),
  • Microdrive (MD),
  • PC Card (PCMCIA/ATA),
  • xD-Picture Card (xD).


In der Anfangszeit der Digitalfotogafie wurden auch Disketten und spezielle CD-RW-Medien verwendet.

Compact-Flash-Karten bieten derzeit das beste Preis-Leistungsverhältnis, sind recht robust, gleichzeitig aber auch das sperrigste noch verbreitete Speichermedium, nachdem die PC Card kaum noch in Digitalkameras genutzt wird.

Diese Speichermedien sind im Gegensatz zum fotografischen Film wiederbeschreibbar. Auf einer Speicherkarte von 1 GByte Kapazität lassen sich etwa 100 bis 150 Fotos speichern, die analogen Kleinbildfotos qualitativ ebenbürtig oder überlegen sind (Digitale Spiegelreflexkamera, 8 Megapixel, Rohdatenformat). Für größere Mengen an Fotos (Bildberichterstattung und Reisefotografie) bieten sich preisgünstige und vergleichsweise leicht transportable „Image Tanks“ (2006: ca. 200,- EUR für 80 GByte, also etwa 8000 bis 12000 Fotos, ca. 220 bis ca. 330 Filme) an, die bereits in der einmaligen Benutzung günstiger als Filmmaterial sind, jedoch nahezu unbegrenzt wiederverwendet werden können. Eine weitere Möglichkeit für den Bildberichterstatter ist es, unterwegs ein (meistens ohnehin mitgeführtes) Notebook zu verwenden, mit dem alle Vorteile der digitalen Fotografie ausgespielt werden können: Fotos können ohne Verzögerung sofort begutachtet, sortiert, nachbearbeitet und direkt per Mobiltelefon oder WLAN in die Heimat versandt werden.

Ein Sonderfall der Digitalfotografie unter extremen klimatischen Bedingungen, wie beispielsweise Einsatz im Weltall, Wüste oder Arktis. Anders als Film, der bei hohen Temperaturen seine Eigenschaften ändert, hat die digitale Fotografie hier mit dementsprechend entworfenen Geräten diesen Bereich mit als erstes erobert, da Kosten eine geringere Rolle spielten. Beispiele für extremste Einsatzgebiete sind beispielsweise Raumsonden oder Messbojen. Weiterhin benötigen digitale Kameras kein Filmmaterial, welches grade bei Langzeit-einsätzen durch seinen Platzbedarf Filmkameras Grenzen setzte, während digitale Kameras ihre Bilder drahtlos übertragen können. Wegen der geringeren Ansprüche an die Stromversorgung der vollmechanischen, filmbasierten Spiegelreflexkameras gegenüber digitalen Kameras benötigen diese jedoch eine weitere Funktionsgruppe zur Stromerzeugung.

Speichermedien zum Archivieren


Ein zuverlässiges Langzeitspeichermedium für digitale Daten existiert bisher nicht. Die Problematik wird als digitales Vergessen bezeichnet und zunehmend nicht nur von Fachleuten, etwa von hauptamtlichen Bibliothekaren und Archivaren, sondern auch von Fotoamateuren erörtert.

Selbstgebrannte CDs oder DVDs können selbst bei guter Lagerung bereits nach wenigen Jahren unlesbar werden, von Billigfabrikaten gibt es auch Berichte, dass schon nach einigen Wochen erste Lesefehler auftraten. Lagerungsfehler wie übergroße Hitze (Hutablage Auto), Produktionsfehler etwa in der Qualitätssicherung, unerkannte Brennfehler und Schäden durch die laufende Benutzung (Kratzer) können diese Frist zudem weiter abkürzen.

Problematisch sind auch alle rein magnetisch aufzeichnenden Medien wie Disketten, die insbesondere in der Frühzeit der Digitalfotografie noch häufig als Speichermedium eingesetzt wurden. Besonders riskant erscheint die Archivierung in proprietären Speichermedien wie Zip- oder Jaz-Disks, die nur von einem oder von wenigen Herstellern für einen begrenzten Zeitraum hergestellt werden; entsprechend archivierte Daten können nur so lange genutzt werden, wie das benötigte Lesegerät funktionsfähig bleibt. Auch Festplatten oder Wechselfestplatten sind hier, auf lange Zeit gerechnet, nicht als Sicher zu betrachten. Insbesondere besteht hier ein sehr hohes Risiko für mechanische Beschädigungen.

Als sehr zuverlässig gelten MO-Disketten, für die die Hersteller mindestens zehn, teilweise 30 Jahre die Haltbarkeit garantieren. Entsprechende Laufwerke sind wegen der relativ hohen Kosten jedoch wenig verbreitet. Die MO-Medien sind durch die Verwendung einer Cartridge auch mechanisch sehr gut geschützt. Ebenfalls empfehlenswert sind DVD-RAM-Medien, denen eine deutlich bessere Haltbarkeit als CD-R, CD-RW oder DVD-R/RW nachgesagt wird. Auch DVD-RAM gibt es, ähnlich wie MO, als Cartridge, jedoch sind passende Laufwerke schwierig zu beschaffen.

Bilddatenbanken

Während in der konventionellen Fotografie die Ãœbersicht über die einzelnen Bilder eines Filmes sehr rasch durch einen Kontaktabzug, Index-Print oder auf einem Leuchttisch möglich ist, werden in der Digitalfotografie spezielle Programme zum Auffinden von archivierten Bilddateien benötigt. Die so genannten Bilddatenbanken erzeugen ein Thumbnail des Bildes und bieten Felder zur Beschreibung des Bildes und der Aufnahmesituation; ein gewisser Komfort ergibt sich durch die Metadaten, die durch das EXIF-Format automatisch aufgezeichnet werden (Datum, Uhrzeit, Brennweite, Blende etc.). Für ambitionierte Fotografen oder Berufsfotografen sind Online-Fotoagenturen geeignete Plattformen, um ihre Fotos zu speichern und von dort direkt an die Käufer (Zeitungen, Verlage, Redaktionen etc.) zu vertreiben. Entsprechend große Server und Speicherplätze sind jedoch Voraussetzung. Darüber hinaus ist eine gute „Verschlagwortung“ mit passenden Schlüsselworten wichtig, um diese Datenbanken entsprechend nutzen zu können. Zur Verschlagwortung werden die im Bild gespeicherten IPTC-Felder genutzt.


Präsentation

Digitale Bilder können ebenso präsentiert werden wie konventionelle Fotografien; für nahezu alle Präsentationsformen existieren mehr oder minder sinnvolle Äquivalente. Die Diaprojektion vor kleinem Publikum wird beispielsweise ersetzt durch die Projektion mit einem Videoprojektor (Video-Beamer); das Fotoalbum durch die Web-Galerie; das gerahmte Foto durch ein spezielles batteriebetriebenes Display usw.

Wird eine erneute Bildwandlung (D/A-Wandlung) in Kauf genommen, können digitale Bilder ausgedruckt oder ausbelichtet werden und anschließend genauso wie konventionelle Papierabzüge genutzt werden; sogar die Ausbelichtung auf Diafilm ist möglich.

Allerdings erfordern alle derzeitigen digitalen Präsentationsformen ausreichende Technikkenntnisse sowie recht kostspielige Technik; der billigste Video-Beamer kostet derzeit noch immer etwa das Fünffache eines guten Diaprojektors. Als weiteres neues Problem stellt sich das der Kalibrierung des Ausgabegeräts, was bei den meisten Monitoren, jedoch nur bei wenigen Flüssigkristallbildschirmen (LCDs) möglich ist und insbesondere bei Beamern einen erheblichen Aufwand verursachen kann.


Fotowirtschaft


Durch die enge Verwandtschaft der Digitalfotografie einerseits mit der Videotechnik und andererseits mit der Informations- und Kommunikationstechnik erschienen ab den 80er Jahren eine Reihe von neuen Akteuren wie Sony und Hewlett Packard auf dem Fotomarkt, die ihr Know-how aus dem Bereich der Video- und Computertechnik gewinnbringend einsetzen konnten. Traditionelle Fotoanbieter wie Leica gingen Kooperationen mit Elektronikunternehmen wie Panasonic ein, um kostspielige Eigenentwicklungen zu vermeiden.

Der Digitalfotografie kommt in der Fotowirtschaft eine wachsende Bedeutung zu. So wurden nach Branchenschätzungen bereits 1999 neben 83 Milliarden analogen Fotografien schon 10 Milliarden Digitalbilder hergestellt.

Nach Angaben des Marktforschungsunternehmens Lyra Research wurden 1996 weltweit insgesamt 990.000 Digitalkameras abgesetzt. In Deutschland wurden im Jahr 2003 erstmals mehr Digitalkameras als analoge Kameras verkauft; nach Aussagen des Einzelhandels wurden 2004 bereits teilweise doppelt so viele digitale Geräte wie analoge Kameras abgesetzt.

Die bisher preiswerteste Digitalkamera wurde im Juli 2003 mit der Ritz Dakota Digital vorgestellt; dabei handelt es sich um ein Modell mit einer Auflösung von 1,2 Megapixeln (1280x960 Pixel) und CMOS-Sensor, die in den USA zu einem Preis von 11 USD angeboten wird.

Neben der Ausbreitung der Digitalfotografie in den Massenmarkt gibt es einen Trend zum Zurückdrängen der analogen Fotografie. Seit etwa 2004 ist beispielsweise eine großflächige Verdrängung fotochemischer Produkte aus dem Angebot von Fotohändlern und Elektronikmärkten zu beobachten: So ging das Produktsortiment an fotografischen Filmen deutlich gegenüber dem Vorjahr zurück. Die Entwicklung neuer Materialien für die Fotografie auf Silberfilm bleibt dennoch nicht stehen, so sind 2006 beispielsweise verbesserte Filme von Fuji auf den Markt gekommen, während Kodak die Marktchancen für einen speziellen Schwarz-Weiss-Film mit einer Empfindlichkeit von ISO 24.000 prüft.

Kodak kündigte im Januar 2004 die Einstellung des Verkaufs von Filmkameras in den Märkten der Industrienationen an. Auch Nikon hat die Entwicklung und den Vertrieb analoger Kameras (abgesehen vom Profimodell Nikon-F-Serie|F6) bereits eingestellt. Minolta hat im Frühjahr 2006 angekündigt, aus dem Kamera- und Filmgeschäft auszusteigen. Aus einer Kooperation mit Sony folgt nun, dass Sony die Produktion digitaler Spiegelreflexkameras beabsichtigt, die mit Minolta-Objektiven nutzbar sind.


2004 wurden fast 7 Millionen Digitalkameras verkauft. Für das Jahr 2005 rechnet der Fotoindustrieverband mit 8 Millionen verkauften Digitalkameras.

Außerdem ist eine zunehmende Medienkonvergenz von Fotografie und Computertechnik festzustellen.


Vergleich mit analoger Fotografie


Vorteile

  • Bei digitalen Kompaktkameras kann man mit dem LCD-Bildschirm den Bildausschnitt gut kontrollieren. Hier entspricht die Funktion insofern derjenigen einer Spiegelreflexkamera, als sie das Problem der Parallaxe umgeht, d. h. man sieht bei den meisten Kameramodellen recht genau den Bildausschnitt, der auch fotografisch festgehalten wird. Schwenk- und Drehmonitore vereinfachen die Kontrolle ausgefallener Aufnahmeperspektiven zum Beispiel aus der Froschperspektive oder über Kopf. Allerdings sind die Vorschaubildschirme in heller Umgebung meist schlecht ablesbar, das Arbeiten mit dem Sucher ist in solchen Fällen vorzuziehen.

  • Man kann das Foto gleich nach der Aufnahme zumindest auf grobe Fehler hin kontrollieren und gegebenenfalls noch eine weitere Aufnahme machen. Eine misslungene Aufnahme kann noch in der Kamera gelöscht werden.

  • Wegen der gegenüber Spiegelreflexkameras vergleichsweise schlechten Monitorauflösung kann bei vielen elektronischen Suchern und Monitoren das Bild vor oder nach der Aufnahme vergrößert werden (Softwarelupe), um die Bildschärfe, zum Beispiel bei manueller Fokussierung, besser beurteilen zu können.

  • Der Weg zur Web- oder Printpublikation von Aufnahmen ist kürzer bzw. schneller, weil das Einscannen von Dias oder Papierbildern entfällt. Das elektronische Versenden auch von Einzelnbildern an Verlage und Auftraggeber ist möglich. Ist keine anderweitige Verwendung der Aufnahme geplant, kann man eine verhältnismäßig niedrige Bildauflösung einstellen und die Aufnahme ohne weitere Nachbearbeitung direkt verwenden. Zugang zu elektronischen Medien vorausgesetzt, sind Austausch und Verbreitung von Fotos schnell und einfach möglich.

  • Ein Filmwechsel für unterschiedliche Lichtverhältnisse ist nicht mehr notwendig. Digitalkameras lassen sich einfach an die vorhandene Lichtmenge anpassen; ähnlich wie bei der Fotografie auf Film nimmt die Bildqualität bei erhöhter Empfindlichkeit ab.

  • Ein großer Vorteil der Digitalfotografie ist die Möglichkeit, über den Weißabgleich die Farbtemperatur anzugleichen. Dieser kann manuell oder automatisch vorgenommen werden. Nur wenige, sehr einfache Kameras bieten allerdings keine manuelle Steuerung. Dadurch können Bilder, wie in der Analogtechnik, sowohl bei Tageslicht als auch bei Kunstlicht farbneutral dargestellt werden. In der herkömmlichen Fotografie sind dafür geeignete Farbfilter oder entsprechendes Filmmaterial nötig.

  • Den Besitz eines Computers und entsprechender Bildbearbeitungs- und -archivierungssoftware vorausgesetzt, kann man digitale Fotos nachbearbeiten und indexieren. Durch die weite Verbreitung von EDV in Haushalten und Firmen ist der Zugang zu früher eher schwer zugänglichen Dunkelkammermethoden durch die simulierende Bildbearbeitung gut möglich.

  • Es treten jenseits von Verschleiß, Zeit, verpasster Gelegenheit und Stromverbrauch keine Kosten für missglückte Bilder auf. Für Anfänger besteht die Möglichkeit, kostengünstig zu üben. Durch direkte Rückkoppelung besteht eine in vielen Aspekten relativ steile Lernkurve. Photographische Experimente werden erleichtert bzw. ermöglichst.

  • Mit Digitalkameras ist in der Regel ein längeres, ununterbrochenes Fotografieren möglich, da es nicht wie in der analogen Fotografie nach meist höchstens 36 Bildern nötig ist, den Film zu wechseln. Bei Digitalkameras können – abhängig vom verwendeten Speicher und dem Bildformat – meist mehrere hundert Bilder in Folge aufgenommen werden, bevor eine Unterbrechung zum Wechseln des Speichermediums oder der Batterien nötig ist. Dies macht sich beispielsweise bei der Unterwasserfotografie bemerkbar, wo man bei der analogen Fotografie pro Tauchgang nur maximal 36 Bilder schießen konnte, da man zum Filmwechsel auftauchen müsste.

  • Da die meisten Digitalkameras im Vergleich zum Kleinbildformat kleinere Sensoren verwenden, bieten sie eine wesentlich höhere Schärfentiefe, was Schnappschüsse und Makrofotografie vereinfacht. Durch die kleinere Sensorgröße ist es einfacher, hochwertige und doch kostengünstige lichtstarke Objektive zu bauen.

  • Durch die Motivsuche über den Bildsensor werden auch bei einfachen Kameras Makroaufnahmen ermöglicht, da es keine Parallaxe zwischen Sucher und Objektiv gibt. Aus demselben Grund sind große Zoomfaktoren möglich, da es keine Probleme mit der Ãœbereinstimmung zwischen Sucherbild und Aufnahme gibt.

  • Bildstabilisatoren können auch über die Bewegung des Bildsensors realisiert werden, bei entsprechend ausgestatteten Kameras sind keine speziellen Wechselobjektive erforderlich.

  • Digitale Kameras bieten häufig die Möglichkeit, einfache Video- und Tonaufnahmen zu machen und wiederzugeben.

  • Die meisten digitalen Kameras können direkt an analoge Wiedergabegeräte, wie zum Beispiel Fernseher oder Videoprojektoren, oder aber auch an PictBridge-kompatible Fotodrucker angeschlossen werden.

  • Digitale Spiegelreflexkameras mit entsprechend hochwertiger Optik übertreffen herkömmliche Kleinbildkameras inzwischen, je nach Wertung, in der Abbildungsqualität. Auch können heutige DSLRs bis zu 10 Bilder pro Sekunde bei maximaler Qualität abspeichern. Bei Nutzung des RAW-Formats sind auch nach der Aufnahme weitgehende Bíldmanipulationen möglich.


Nachteile

  • Der im Vergleich zu herkömmlichen Kameras hohe Stromverbrauch kann bei Kameras mit zu kleiner Akkukapazität bzw. zu schwachem Akku ein Problem sein. Neuere Modelle ermöglichen dabei rechnerisch einige hundert Bilder mit einer Akku-Ladung. Wiederaufladbare Akkus haben im Vergleich zu den früher verwendeten, zum Teil speziellen und damit teure Batterien Vorteile. Die Abhängigkeit vom mitgeführten Stromlieferanten bleibt insbesondere bei schwierigen Wetterbedingungen (Kälte, Luftfeuchtigkeit, etc.) oder an abgelegenen Orten ein Problem. Auch ist die Lieferbarkeit von Ersatzteil-Akkus innerhalb der gesamten Kameralebenszeit nicht garantiert.

  • Durch die kleinere Größe des Sensors im Vergleich zum Film ist selbst bei weit geöffneter Blende keine geringere Schärfentiefe erreichbar, weil auch die Brennweite der Objektive kleiner wird. Das kann zum Beispiel bei Porträtfotos störend sein und schränkt typische fotografische Gestaltungsmöglichkeiten stark ein. Abhilfe schaffen digitale Spiegelreflexkameras, welche, bei höheren Kosten, deutlich größere Sensoren besitzen. Seit 2005 gibt es auch digitale Kompaktkameras mit großen Sensoren. Der Effekt kann zum Teil auch mit Bildbearbeitungsprogrammen nachgeahmt werden.

  • Der Bildsensor ist wärmeempfindlich, das heißt, er produziert bei höheren Temperaturen ein höheres Bildrauschen. Kompaktkameras, bei denen der Sensor auch zur Bildvorschau eingeschaltet bleiben muss, neigen bei längerer Betriebsdauer zu erhöhtem Rauschen. Bei digitalen Spiegelreflexkameras ist die Zunahme des Rauschens durch Eigenerwärmung vernachlässigbar, da der Bildwandler nicht zur Motivsuche verwendet werden kann oder sich wegen der geringen Leistungsaufnahme nicht maßgeblich erwärmt.

  • Bildsensoren können durch längerdauernde intensive Lichteinwirkung beschädigt werden.<ref>How to burn a Nikon coolpix 990 sensor</ref> Fertigungsfehler, die Lebenszeit oder Nutzbarkeit beinträchtigend, sind möglich.

  • Kontrastumfang und Farbtiefe sind insbesondere bei sehr kleinen Sensoren meist geringer als bei herkömmlichem Film. Hochwertige DSLR können die Qualität herkömmlichen Films je nach Aufnahmesituation erreichen und, je nach Kamera, im Einzelfall auch übertreffen.

  • Schlechtere Bildauflösung bei Schwarzweiß-Aufnahmen gegenüber vergleichbar guten Filmen und Objektiven. Bei der Verwendung von Bayer-Sensoren und optischen Tiefpässen ist die Farbauflösung verhältnismäßig gering (Ausnahme Foveon-X3). Direkte höherauflösende Schwarz-Weiß-Technik ist, entgegen dem relativ einfach zu sehendem Filmtausch in der Analogtechnik bei der weit verbreiteten Farb-Sensortechnik nur durch Umrechnung der Bilddaten möglich.

  • Bei digitalen Kompaktkameras ist eine teilweise deutliche Auslöseverzögerung festzustellen, die vornehmlich dadurch verursacht wird, dass der Bildsensor auch für den Autofokus ausgewertet wird. Damit sind Aufnahmen von Bewegungsphasen oder ruhige, spontane Schnappschüsse erschwert.

  • Wegen relativ kurzer Produktzyklen hoher Wertverlust der Hardware. Im Vergleich zur analogen Filmtechnik auch relativ schneller Wegfall von Verbrauchsmaterialien und Ersatzteilen. Kaum lokale Reparaturmöglichkeiten.

  • Umstrittene "Haltbarkeit" digitaler Informationen (Dauerhaftigkeit und langfristige Verfügbarkeit von Speichermedien, Datenformaten, Laufwerken, Hard- und Software). Gerade bei Aufnahmen in proprietären Speicherformaten (sogenannte Rohdaten (RAW) mit der ursprünglichen Bildinformation) ist eine zukünftige Verwendbarkeit dieser Rohdaten derzeit nicht sicher abschätzbar. Ein offener Standard für RAW-Daten existiert zwar (DNG bzw. OpenRAW), wird aber bislang (2007) erst von wenigen Herstellern, Kameramodellen und Bildbearbeitungsprogrammen unterstützt.

  • Kompakte Digitalkameras verzichten zugunsten eines möglichst großen Displays zunehmend auf einen optischen Sucher. Dies kann die Bildgestaltung bei sehr hellen Lichtverhältnissen sehr erschweren. Vorhandene optische Sucher sind zum Teil schlechter Qualität.

  • Aufnahmen bei Schwachlicht und in der Nacht sind durch die oft vorgesetzte elektronische Steuerung, Bildrauschen und Akkukapazitätsproblemen erschwert.

  • Die Robustheit und Haltbarkeit einfacher analoger Technik kann, bedingt durch den technischen Aufwand digitaler Technik, nicht erreicht werden.

  • Eine direkte bastlerische Annäherungen an die oder Experimente innerhalb der Phototechnik sind aufwendiger oder schlicht unmöglich.

  • Die Einstiegskosten sind, wie die Kosten für höherwertiges Material, in der digitalen Photographie im Vergleich zur analogen Phototechnik vergleichsweise hoch.


[bearbeiten] Literatur

* Ralph Altmann: Insiderbuch Digitale Fotografie 2. Midas 2003. ISBN 3907020642
* Tom Ang: Digitale Fotografie und Bildbearbeitung. Dorling Kindersley 2002. ISBN 3831003882
* Andreas Kunert. Farbmanagement in der Digitalfotografie. Mitp-Verlag 2004. ISBN 3826614178
* Helmut Kraus und Romano Padeste: Digitale Highend-Fotografie. Dpunkt Verlag 2003. ISBN 3898642399
* Jost J. Marchesi: digital Photokollegium. 3 Bände, Verlag Photographie, 2003 ISBN 3933131715 ISBN 3933131723 ISBN 3933131731
* Christoph Prevezanos: Digitalfotografie-Praxisbuch (mit CD-ROM). Franzis 2003. ISBN 3772360173
* Andrea Trinkwalder: Raw-Masse. Höhere Farbtiefe, weniger Fehler: Bessere Bilder dank Rohdaten. In: c't 16/04, S. 152 (atr)
* Wolfgang Krautzer: Digitale Fotopraxis. Leitfaden für Profis und Einsteiger. Report Verlag 2004. ISBN 3901688420
* Josef Scheibel, Robert Scheibel: Fotos digital - Basiswissen aktuell (2. erweiterte Neuauflage). vfv Verlag 2007. ISBN 9783889551788
* Josef Scheibel, Robert Scheibel: Fotos digital - Aufnahmepraxis. vfv Verlag 2006. ISBN 3889551718
* Josef Scheibel, Robert Scheibel: Fotos digital - printen, präsentieren, archivieren. vfv Verlag 2004. ISBN 3889551513


Weitere Quellen




Weblinks
Allgemeines



Software



Analyse digitaler Fotografien
 
Seite 1 von 2 Gehe zu Seite 1, 2  Weiter
Alle Zeiten sind UTC + 1 Stunde [Sommerzeit aktiviert]