Galerie   Spiele   Spenden   Startseite    Forum    Wiki    Suchen    FAQ    Registrieren    Login
Die Suche hat 17 Beiträge gefunden.
Autor Nachricht
Beitrag Forum: Fotowiki   Geschrieben: So, 16. Jan 2011 13:43   Titel: Autofokus

Als Autofokus (AF) wird die Technik einer Kamera oder allgemein eines jeden optischen Apparates bezeichnet, automatisch auf das Motiv scharfzustellen. Grundsätzlich wird zwischen passivem Autofokus, also solchem, der nur das vom Motiv abgestrahlte oder reflektierte Licht verwendet, und aktivem Autofokus unterschieden, der auch bei völliger Dunkelheit funktioniert.

Passiver Autofokus


Am weitesten verbreitet sind heute passive Autofokussysteme. Die beiden grundsätzlichen Techniken sind der Phasenvergleich und die Kontrastmessung. Der passive Autofokus ist auf genügende Beleuchtung und ausreichenden Objektkontrast angewiesen, um zu funktionieren. Durch Beleuchtung des Motivs mit einem Hilfslicht kann er jedoch zu einem aktiven Verfahren erweitert werden.

Kontrastmessung

Eine Fokussierung mittels Messung des Bildkontrasts läuft prinzipiell so ab, wie auch das Auge beziehungsweise ein Fotograf ohne weitere Hilfsmittel fokussieren: Die Bildweite des Objektivs wird solange variiert, bis der Kontrast maximal ist. Da die Kamera im Gegensatz zu einem Lebewesen keine Vorstellung davon hat, wie weit das Motiv ungefähr entfernt ist, reicht eine einzige Kontrastmessung nicht aus, um die Fokussierrichtung festzulegen. Erst wenn mindestens zwei Messungen vorliegen, ist nicht nur die Richtung bekannt, sondern es kann die Fokusposition evtl. auch extrapoliert werden.

Die Methode der Kontrastmessung kommt häufig in Video- und kompakten Digitalkameras zum Einsatz. Hier ist ohnehin ein das gesamte Format ausfüllender Bildsensor vorhanden, und die Integration des Phasenkontrastverfahrens in diesen Chip wäre sehr aufwendig bis unmöglich. Aufgrund des rechnerischen Aufwandes und nötigen Vorwissens der absoluten Verfahren („Depth from Defocus“) kommen in der Praxis meist nur relative Verfahren („Depth from Focus“) zum Einsatz.

Der Prozessor der Kamera errechnet dabei die Frequenzverteilung im Bild. Je größer der Anteil der hohen Frequenzen, desto schärfer das Bild. Relatives Verfahren bedeutet, dass mehrere Aufnahmen mit unterschiedlicher Fokussierung notwendig sind, um eine Verbesserung oder Verschlechterung der Bildschärfe und die Richtung der nötigen Fokussierung zu ermitteln. Die Nachteile dieser Methode sind also großer Rechen- und Motoraufwand, was sich negativ auf die Batteriekapazität und Geschwindigkeit niederschlägt. Des Weiteren ist für eine erneute Fokusmessung ohne Veränderung des Bildausschnittes wiederum eine Fokusveränderung (=zunächst eine Defokussierung) notwendig, sodass diese neue Messung üblicherweise merkbar Zeit benötigt.

Phasenvergleich

Die ältere passive Methode ist der Phasenvergleich. Dieses Verfahren ist zwar komplexer und erfordert einen speziellen Sensor, es erfordert jedoch prinzipiell keine große Rechenleistung, und die Fokussierrichtung kann mit der ersten Messung bestimmt werden.

Die Methode wurde erstmals 1976 durch Honeywells Visitronic-Chip realisiert. Die erste damit ausgerüstete Serienkamera war die Konica C35-AF. Das Funktionsprinzip beruht auf Triangulation der Objektentfernung durch (mindestens) zwei durch dieselbe Linse schauende Autofokussensoren (Stereobild). Das Ergebnis ist eine schnelle und genaue Fokussierung, die ohne erneute mechanische Fokussierung und damit ohne Zeitverlust beliebig oft wiederholt werden kann. Bei Digitalkameras findet dieses Verfahren aufgrund der höheren Kosten und technischen Komplexität überwiegend in den teureren Spiegelreflexkameras Verwendung, jedoch sind beispielsweise viele Kompaktkameras der Firma Ricoh ebenfalls mit dieser Technik ausgestattet, hier „Hybrid-AF“ genannt.

Aktiver Autofokus


Der aktive Autofokus funktioniert auch in absoluter Dunkelheit. Man unterscheidet zwischen direkter Entfernungsmessung mittels Ultraschallwellen und der Erweiterung von passiven Methoden mittels Objektbeleuchtung.

Ultraschall-Laufzeitverfahren

Ein aktives Ultraschallverfahren (Sonar) kommt beispielsweise seit 1982 bei diversen Polaroid-Kameras zum Einsatz. Dabei wird die Zeit, die der Schall von der Kamera zum Objekt und zurück benötigt, gemessen und je nach berechneter Entfernung fokussiert. Der Vorteil dieses Verfahrens ist, dass es extrem schnell funktioniert, da keine Probefokussierung wie bei der Kontrastmessung notwendig ist. Nachteilig ist, dass keine präzise Auswahl des Fokus auf dem Motiv möglich ist, und dass es durch Glasscheiben gar nicht und mit Spiegeln nur bedingt funktioniert, da es kein optisches Verfahren ist.

Objektbeleuchtung

Eine Phasenkontrast- oder Kontrastmessung kann trotz zu geringer Leuchtleistung des Motivs durchgeführt werden, wenn dieses aktiv beleuchtet wird. Dabei kommt entweder ein Hilfslicht, das dem einer Taschenlampe ähnelt, oder Messblitze zur Verwendung.

Das AF-Hilfslicht ist meist rot (sichtbar) oder infrarot (unsichtbar, aber durch Längs-CA des Objektivs ungenauer). Wie im Bildbeispiel zu sehen ist, kommt dabei idealerweise kein gleichmäßiger Lichtfleck zum Einsatz, sondern es wird ein Muster auf das Motiv projiziert. Wenn der Phasenkontrast in der Horizontalen gemessen wird, eignet sich ein vertikales Linienmuster besonders gut. Der große Vorteil ist, dass mit solcher Beleuchtung sogar auf Flächen ohne jeden Kontrast fokussiert werden kann. Dieses Verfahren kommt deshalb auch dann zum Einsatz, wenn das Objekt eigentlich genügend Licht für die Messeinrichtung liefert, jedoch zu geringen Kontrast aufweist. Wenn die Kamera über kein eigenes Blitzlicht verfügt, ist das AF-Hilfslicht meist im Blitzgerät eingebaut.

Neben der (zeitlich) kontinuierlichen Ausleuchtung mit einem AF-Hilfslicht werden auch Messblitze verwendet. Diese Methode ist wohl kostengünstiger zu realisieren, hat aber neben der „Auffälligkeit“ den Nachteil, dass wegen der gleichmäßigen Ausleuchtung wie bei passiven Verfahren nur auf Objekte mit ausreichendem Kontrast scharfgestellt werden kann. Vorteilhaft ist, dass auch stark bewegte Objekte wegen fehlender Bewegungsunschärfe scharfgestellt werden können.

Allgemeine Eigenschaften


Die Geschwindigkeit und Genauigkeit des Autofokus können sehr gut sein. Normalerweise liegen sie über dem, was manuell erreicht wird. Moderne Kameras messen verschiedene Bereiche des Bildes und entscheiden, wo das Objekt ist. Einige Kameras sind auch fähig, zu entscheiden, ob sich das Objekt auf die Kamera zu oder von ihr weg bewegt, sowie welche Geschwindigkeit es hat, und verfolgen es (Prädiktions-Autofokus).

Einfache AF-Systeme besitzen nur einen Fokussensor. Höher entwickelte verfügen jedoch über ein ganzes Gitter von Sensoren. Die Nikon D3 und andere (semi-)professionell angesiedelte Nikon-Modelle haben sogar 51 Sensoren, die einzeln auswählbar sind, um das zu fokussierende Objekt zu erfassen. Bei den EOS-1D-Modellen von Canon sind es 45 Sensoren.

Autofokus in Kameramobiltelefonen


Mittlerweile werden Autofokus-Systeme auch in einigen Mobiltelefonen mit eingebauter Digitalkamera eingesetzt. Diese sollen die bis jetzt weit verbreiteten Fixfokuslinsen ablösen und für eine höhere Bildschärfe sorgen.

Siehe auch



  • bitte bearbeiten


Weblinks


Beitrag Forum: Fotowiki   Geschrieben: Fr, 19. Sep 2008 19:55   Titel: Innenfokussierung

Innenfokussierung



Innenfokussierung, abgekürzt IF, ist eine Konstuktionsart von Objektiven, bei der die Entfernungseinstellung nicht durch eine Verschiebung des ganzen Objektivs, sondern nur von einer oder mehreren Linsen innerhalb des Objektivs erfolgt. Die übrigen Linsen, insbesondere die Frontlinse, behalten ihren Abstand von der Bildauffangebene (Film oder Bildsensor) bei, wodurch sich die Baulänge des Objektivs nicht ändert.


Problematik


Gewöhnliche Objektive fokussieren dadurch, dass sich das gesamte Linsenpaket in Richtung ihrer optischen Achse verschiebt. Dies führt beim Einstellen auf nahe Motive zu einer größeren Baulänge und einer damit verbundenen Schwerpunktverlagerung. Hinzu kommt, dass mit dem Verstellen aller Linsen eine große Masse bewegt werden muss, die das Fokussieren verlangsamt. Diese Effekte sind für kurze Brennweite bedeutungslos, bei Teleobjektiven aber beträchtlich und von großem Nachteil. Deswegen werden Kameraobjektive ab etwa 3facher Vergrößerung gegenüber der Normalbrennweite, bei Kleinbild also etwa ab 150 mm, seit den 1970er Jahren zunehmend mit Innenfokussierung gebaut.

Objektive mit Innenfokussierung lassen sich kompakter und leichter bauen, was insbesondere bei langen Brennweiten günstig ist. Auch verlagert sich der Schwerpunkt beim Fokussieren kaum, so dass bei Stativaufnahmen keine Änderung der Stativbelastung und somit kein störendes Kippen der Kamera (durch die Elastizität des Stativs) erfolgt. Von Nachteil kann allerdings sein, daß sich im Allgemeinen die Brennweite mit der Entfernungseinstellung ändert.

Funktionsweise


Bei konventioneller Fokussierung bleiben die Abstände der Linsen voneinander stets gleich. Das Linsenpaket besitzt eine Unendlicheinstellung und lässt sich von dieser ausgehend von der Kamera weg verschieben. Um ein Motiv in gegebener Entfernung scharf abzubilden, ist eine bestimmte Entfernung des Linsenpakets (genauer: der bildseitigen Hauptebene) von der Film- bzw. Sensoerebene einzustellen. Diese Auszug genannte Verschiebung des Objektivs hängt neben der Motiventfernung auch von der Brennweite des Objektivs ab. Sie wird mit zunehmender Brennweite größer.

Wenn man auch die Abstände der Linsen voneinander ändert, wie es bei der Innenfokussierung der Fall ist, verschiebt sich nicht nur die bildseitige Hauptebene, sondern es ändert sich im Allgemeinen auch die Brennweite und damit der einzustellende Abstand der Hauptebene vom Film. Somit gibt es zwei Möglichkeiten, die Scharfeinstellung zu realisieren:

  • Die Hauptebene wird bei gleichbleibender Brennweite nach vorn verschoben.
  • Bei gleichbleibender Position der Hauptebene wird die Brennweite verkleinert.


In der Regel nutzt man beide Effekte gleichzeitig.

Bei der Innenfokussierung werden nur ausgewählte Linsen im hinteren Bereich des Objektivs verschoben. Diese Linsen sind relativ klein und leicht und müssen sich meist nur wenig bewegen, und beeinflussen den Objektiv-Schwerpunkt infolgedessen nur unbedeutend. Auch lassen sie sich sehr schnell verstellen, sowohl mit der Hand, wie auch durch einen Autofokusmotor. Da die vorderen Linsen, insbesondere die Frontlinse, nicht zu den verstellten Linsen gehören, bleibt die Objektiv-Baulänge unverändert. Die verringerte Brennweite und somit Vergrößerung bei Naheinstellung hat in der Praxis keine Bedeutung. Im Gegensatz zum herkömmlichen Verfahren kann sich aber die Verzeichnung des Objektivs mit der Entfernung ändern.

Anstatt ausgewählte Linsen zu verschieben, kann man die Entfernung auch verstellen, indem man Linsen auswechselt. Dies führt zu einer stufenweisen Fokussierung und findet bei Polaroid-Sofortbildkameras Anwendung (siehe Polaroid).

Vorteile der Innenfokussierung


  • Bei der Fokussierung wird weniger Masse bewegt, so dass sie schneller erfolgen kann.
  • Die Gewichtsverlagerung ist viel kleiner, so dass sich die Stativbelastung kaum ändert und sich die Kamera nicht neigt.
  • Die Fassung des Objektivs kann kleiner und leichter konstruiert werden.
  • Das Objektiv ist im Allgemeinen robuster. Wenn das Objektiv einen Schlag auf die Vorderkante abbekommt, wird die Fokussiermechanik dadurch nicht belastet, da sie komplett im Inneren liegt.
  • Die Frontlinse dreht sich nicht (im Gegensatz zur Frontlinsen-/Frontgruppen-Fokussierung vieler Zoomobjektive).

Dadurch können Pol- oder Verlaufsfilter (s. Filter) problemlos benutzt werden. Darum ist auch die Verwendung von tulpenförmigen Streulichtblenden (ugs. Gegenlichtblenden) möglich, welche in den Bildecken eingeschnitten sind, um Vignettierungen zu vermeiden.

Besonderheit: Hinterlinsenfokussierung


Die Hinterlinsenfokussierung (engl. rear focus, RF) ist eine Spielart der Innenfokussierung. Dabei wird die hinterste Linse oder Linsengruppe verschoben.
Beitrag Forum: Praktica-Forum   Geschrieben: Do, 18. Sep 2008 21:39   Titel: Praktica BX 20 Bedienungsanleitung (Handbuch)

Practica BX 20 Bedienungsanleitung - Handbuch



Inhaltsverzeichnis

Einleitung
Technische Merkmale
Bezeichnung der Einzelteile
Vorbereitung zur Aufnahme
Batterie einlegen
Batterie prüfen
Rückwand öffnen
Film einlegen
Rückwand schließen
Aufnahmebereitschaft herstellen
Filmempfindlichkeit einstellen
Aufnahmevorgang
Automatische Belichtungszeiten
Steuerung
Vorwahl der Blendenzahl
Belichtungsautomatik, Anzeige
Auslösen
Messwertspeicherung
Belichtungskorrektur
Teilautomatische Arbeitsweise
Kamerahaltung
Blitzlichtaufnahmen
Objektivwechsel
Bildschärfe einstellen
Schärfentiefenanzeige
Infrarotaufnahmen
Auslöser
Verriegeln des Auslösers
Selbstauslöser
Filmwechsel
Pflege der Kamera




Einleitung


Mit der PRAKTICA BX 20 besitzen Sie eine hochwertige Kleinbildspiegelreflexkamera, die sich durch hohen Bedienungskomfort auszeichnet und die einen großen Spielraum für gestalterische Kreativität bietet.

In einem Bereich von 1/1000 s bis 40 s werden die Belichtungszeiten vollautomatisch gesteuert. Die Mikroelektronik der PRAKTICA BX 20 ermöglicht darüber hinaus das Fotografieren mit festen Belichtungszeiten zwischen 1/1000 s und 1 s sowie beliebig langen Belichtungszeiten mit der B-Einstellung.

Die Innenmessung erfolgt bei offener Blende und somit hellstem Sucherbild durch die elektronische Blendenwertübertragung.

Die PRAKTICA BX 20 ist mit einem System zur Blitzinnenmessung ausgerüstet. Bei Verwendung eines systemkonformen Computerblitzgerätes wird das Blitzlicht von der Kamera gemessen, ausgewertet und für die richtige Belichtung dosiert. Neben Computerblitzgeräten können auch herkömmliche Elektronenblitzgeräte verwendet werden.

Für gezielte Ober- und Unterbelichtung ist die Automatik manuell korrigierbar.

An den Rändern des übersichtlichen und hellen Sucherbildes werden durch Leuchtdioden angezeigt: die zu erwartende Belichtungszeit, Grenzwerte, Arbeitsstufen (Voll- bzw. Teilautomatik), Memofunktion, Belichtungskorrektur sowie Blitzbereitschaft einschließlich Blitz"0.K."Signal bei systemkonformen Computerblitzgeräten.

Am unteren Sucherbildrand sind die vorgewählte Blendenzahl und die Anzeige für den Kameraspannzustand sichtbar.

Die PRAKTICA BX 20 verfügt über einen Winderanschluß und gestattet in bekannter Weise den Anschluss des PRAKTICA-Zubehörs.



Technische Merkmale


Einäugige Spiegelreflexkamera für Bildformat 24 mm x 36 mm, Innenmessung bei Offenblende durch elektronische Blendenwertübertragung

Automatische elektronische Belichtungszeitensteuerung stufenlos von 1 /1000 s bis 40 s Automatik auf Teilautomatik umschaltbar, dabei Festzeiten von 1 /1000 s bis 1 s

Elektronische Blitzinnenmessung und Blitzdosierung bei Verwendung systemkonformer Computerblitzgeräte, Synchronisation (ca. 1 /100 s)

Blitzbereitschaftsanzeige (und Blitz "O.K."-Signal) im Sucherbild

Belichtungszeitenvorinformation im Sucher durch Leuchtdioden

Grenzwertanzeige bei Unter- bzw. Überbelichtung

Eingestellte Blende am unteren Sucherbildrand sichtbar

Information über den Spannzustand der Kamera

Manuelle Korrektur der Belichtung im Bereich von ± 2 Belichtungsstufen und Anzeige der Korrektur durch rote Leuchtdiode im Sucherbild bei±

Meßwertspeicherung und Anzeige dieser Funktion durch grüne Leuchtdiode im Sucherbild be AEL (automatic exposure lock)

Selbstauslöser (ca. 10 s) mit Startknopf und
Doppelfunktion als Abblendhebel zur Schär-
fentiefenkontrolle

Bildeinstellsystem: Fresnellinse mit neuartigem, diagonal angeordneten Tripelmeßkeil, Monoplanrasterring und Mattring

Sucherbildgröße ca. 95% der Bildseiten

PRAKTICA-Bajonett (Anlagemaß 44,4 mm,
Innendurchmesser 48,5 mm)

Anschluß für Motoraufzug

Memohalter an der Kamerarückwand

Batteriekontrolle durch Information im Sucher

Energiequelle: Primär-Batterie 6V (z.B.
PX 28/Mallory)

Silizium-Fotosensor als Lichtempfänger

Meß- und Steuerbereich: 0-17 EV bei
100 ASA und Blende 1,4

Abmessungen (Gehäuse):
141 mmx88 mmx49 mm

Masse (Gehäuse ohne Batterie): 510 g



  1. Filtergewinde
  2. Entriegelungstaste
  3. Auslöser für Selbstauslöser
  4. Spannhebel für Selbstauslöser (Betätigung
    gegen Uhrzeigerrichtung), Abblendhebel zur
    Schärfentiefenkontrolle (Betätigung in Uhrzei
    gerrichtung)
  5. Bildzähler
  6. Spannhebel
  7. Fenster für Blendenwerteinspiegelung
  8. Rlückspukurbel
  9. Rückspulknopf
  10. Einstellring für Filmempfindlichkeit
  11. Entriegelungstaste Filmempfindlichkeit
  12. Speicher- und Batterieprüftaste (Memory-Taste)
  13. Blendeneinstellring
  14. Entfernungseinstellring
  15. Schärfentiefenskala und Infrarotpunkt
  16. Einsetzmarkierung am Objektiv
  17. Trageöse
  18. Rückspulauslöser
  19. Marke für Automatik-Betrieb
  20. Auslöserverriegelung
  21. Betriebsartenwähler für Belichtungszeiten und Automatik
  22. Auslöser mit Anschluß für Drahtauslöser
  23. Steckschuh mit Mittenkontakt
  24. Mittenkontakt
  25. Computerblitz-Koppelstelle
  26. Einstellzeiger für Belichtungskorrektur mit Index
  27. Rückwand
  28. Filmaufwickelspule
  29. Filmtransportrolle
  30. Verschlußlamellen
  31. Patronenraum
  32. Okularfassung mit Zubehörwechselstelle
  33. Steckrahmen (Memohalter)
  34. Deckel für Batterieraum
  35. Stativgewinde
  36. Führungskanal für Motoraufzug
  37. Kupplung für Motorauzug
  38. Arretierung für Motoraufzug
  39. Kontakte für Motoraufzug
  40. Marke (Einsetzhilfe fürBatterieraumdeckel



Batterie einlegen


Zur Stromversorgung des gesamten Elektroniksystems wird eine Energiequelle von 6 Volt benötigt. Das kann eine Alkali-Mangan-, SilberOxid oder Lithiumbatterie sein.

Es lassen sich jedoch auch 4 Knopfzellen (z. B. LR 44) in Batteriehülse (Bestell.﷓Nr. 961 363) verwenden.

Eine frische Batterie reicht bei normalem Gebrauch der Kamera ca. 2 Jahre.

Beim Einlegen Batterieraumdeckel (34) in Pfeilrichtung schieben und herausschwenken. Kontakte im Batterieraum und an der Batterie mit trockenem Tuch säubern. Batterie mit Pluspol gegen den federnden Kontakt drücken (Polaritätskennzeichnung im Batterieraum) und hineinkippen. Deckel mit Pfeil in Richtung der Markierung einsetzen, niederdrücken und einschnappen lassen.

Es ist ratsam, die Kontaktstellen an der Batterie und im Batterieraum Von Zeit zu Zeit nachzusehen und ggf. zu reinigen. Gegen tiefe Temperaturen ist die Batterie empfindlich und sollte in geeigneter Weise geschützt werden.

Batterie bei längerer Nichtbenutzung aus dem Batterieraum der Kamera entfernen.


Batterie prüfen

Verschluß muß gespannt sein. Auslöser (22) und dann Memorytaste (12) drücken. Ist die Leuchtdiodenanzeige gut sichtbar, ist die Batterie in Ordnung. Bei verbrauchter Batterie verlöschen die Leuchtdioden am rechten Sucherbildrand. Bei den Einstellungen "B" und "~" ist keine Batterieprüfung möglich.




Rückwand öffnen




Rückspulknopf (9) bis zum Anschlag nach oben ziehen, so daß sich die Rückwandverriegelung löst. Rückwand vollständig öffnen, dabei springt der Bildzähler (5) selbständig in die Ausgangsstellung zurück.


Film einlegen

Achtung! Vor dem Filmeinlegen sollte der Betriebsartenwähler auf eine kurze Festzeit eingestellt werden, da sich bei der Einstellung Automatik "auto" eine lange Belichtungszeit bilden kann. Bis zum Ende des Verschlußablaufens ist der Spannhebel gesperrt. Keine Gewaltanwendung!

Gegebenenfalls können Sie eine lange Belichtungszeit durch Umstellen von "auto" auf "B" abbrechen. Eine lange Belichtungszeit wird bei Einstellung "auto" auch beim Auslösen ohne eingesetztes Objektiv gebildet.

Filmpatrone in den Patronenraum (31) einlegen. Rückspulknopf (9) wieder vollständig hineindrükken, ggf. dabei drehen. Filmanfang mindestens 1 cm in den Schlitz der Aufwickelspule (28) einführen, den Spannhebel vorsichtig betätigen, bis die Zähne der Filmtransportrolle (29) in die Perforation des Filmes eingreifen.

Spannhebel bis an den Endanschlag bewegen und zurückführen. Kamera durch Druck auf den Auslöseknopf (22) auslösen.

Rückwand schließen

Rückwand in der Mitte der Riegelseite fassen und gegen den Kamerakörper drücken, bis die Verriegelung hörbar einrastet.



Aufnahmebereitschaft herstellen


Der Spannhebel (6) läßt sich etwas ausschwenken, ohne den Aufzugsvorgang bereits einzuleiten. Diese Bereitschaftsstellung erhöht die Griffsicherheit bei schneller Bildfolge. Spannhebel vollständig bis zum Anschlag schwenken, zurückführen und Kamera mit Auslöser (22) auslösen. Vorgang wiederholen und nochmals spannen, bis der automatische Bildzähler (5) die Bildzahl " 1 " anzeigt. Über den Spannzustand der Kamera wird am unteren Sucherbildrand informiert: Blendenzahlbild rot -Kamera ungespannt, Blendenzahlbild farblos -Kamera gespannt Der ordnungsgemäße Filmtransport ist am Mitdrehen des Rückspulknopfes (9) bei Betätigung des Spannhebels (6) kontrollierbar.


Filmempfindlichkeit einstellen



Entriegelungstaste (11) drücken und durch gleichzeitiges Drehen des Einstellringes (10) die auf der Filmpackung angegebene Filmempfindfichkeit (ASA-Wert) gegenüber dem Index auf dem Korrekturwertzeiger (26) einstellen. Als Gedächtnisstütze über die Art des eingelegten Filmes kann die abgetrennte Deckellasche der Filmschachtel in den Steckrahmen (Memohalter, 33) eingeschoben werden.



Automatische Bellichtungszeitensteuerung


Die PRAKTICA BX 20 arbeitet bei AutomatikEinstellung "auto" stufenlos und automatisch im Belichtungszeitenbereich von 1/1000 s bis 40 s. Die elektronische Belichtungszeitensteuerung erfolgt entsprechend den Lichtverhältnissen, der vorgewählten Blendenzahl und der Filmempfindlichkeit. Leuchtdioden im Sucherbildrand informieren über die angesteuerte Belichtungszeit. Bei "OVER" oder "UNDER" weisen sie auf Uberbzw. Unterschreitung des Belichtungszeitenbereiches hin.

Durch die Innenmessung werden die Belichtung beeinflussende Faktoren, wie Brennweite des Objektives, Filter, auszugsverlängerndes Zubehöre, automatisch berücksichtigt.

Werden über Adapter Objektive mit PRAKTICA-Gewindeanschluß M 42X1 verwendet, erfolgt die Lichtmessung automatisch bei Arbeitsblende.


Vorwahl der Blendenzahl



Durch Drehen des Blendenringes (13) die gewünschte Blendenzahl der Marke auf der Objektivfassung gegenüberstellen. Die eingestellte Blendenzahl ist dabei am unteren Rand des Sucherbildes eingespiegelt.

Wird der Hebel (4) in Pfeilrichtung betätigt, schließt sich die Blende entsprechend der eingestellten Blendenzahl und die Schärfäntiefe ist im Sucherbild beurteilbar.


Belichtungsautomatik, Anzeige

Betriebsartenwähler (21) auf Automatik "auto" einstellen. Durch leichten Druck auf den Auslöser (22) wird die Elektronik eingeschaltet. Im Sucherbild kann die von der Automatik ermittelte Belichtungszeit durch Leuchtdioden überwacht und, falls sie nicht motivgerecht erscheint, durch Vorwahl einer anderen Blendenzahl korrigiert werden. Dabei ist jeder Zeitstufe im Bereich von 1/1000 s bis 8 s eine Leuchtdiode zugeordnet; Zwischenwerte der stufenlosen Einstellung werden durch gleichzeitiges Leuchten zweier benachbarter Dioden angezeigt. Belichtungszeiten zwischen 8 s und 40 s signalisiert die Leuchtdiode durch Dauerlicht bei "UNDER", Über- bzw. Unterschreitung der Werte 1/1000 s bzw. 40 s werden durch Blinklicht bei "OVER" bzw. "UNDER" angezeigt. In diesem Fall wird der Verschluß stets mit 1 /1000 s bzw. 40 s gesteuert. Bilden sich Belichtungszeiten von 1/15 s und länger, ist die Verwendung eines Stativs oder einer anderen geeigneten festen Unterlage erforderlich.


Auslösen


Nach Kontrolle der Belichtungszeit im Sucher ist durch Weiterdrücken des Auslösers (22) der Verschluß auszulösen. Beim nachfolgenden Loslassen des Auslösers wird die Elektronik automatisch abgeschaltet.

Das Loslassen des Auslösers während langer Belichtungszeiten hat keinen Einfluß auf den Belichtungsvorgang. In diesem Fall erfolgt das Abschalten der Elektronik nach dem vollständigen Verschlußablauf.

Soll bei einer sehr langen Belichtungszeit der Ablauf vorzeitig abgebrochen werden (z. B. nach irrtümlichem Auslösen), so ist der Betriebsartenwähler (21) kurzzeitig auf "B" zu stellen.


Meßwertspeicherung

Weist das Fotomotiv einen besonders großen Kontrast auf (z.B. dunkel bekleidete Personen imsonnenbeschienenenSchneeoderhellerAufnahm egegenstand vor dunklem Hintergrund), ist der Belichtungswert durch individuelle Messung des wichtigsten Bildelementes aus Nahdistanz zu ermitteln. Der bei der Nahmessung ermittelte Meßwert wird gespeichert, und der Bildausschnitt kann danach verändert werden, ohne daß sich eine andere Belichtung ergibt. Zur Speicherung des Meßwertes die Kamera spannen, den Auslöser (22) leicht drücken (Meßvorgang) und kurzzeitig die Memory-Taste (12) betätigen (Meßwertspeicherung, die Leuchtdiode neben AEL leuchtet).

Danach erfolgt bis zum Auslösen des Verschlusses keine neue Messung mehr; der Verschluß bildet die Belichtungszeit entsprechend dem gespeicherten Wert. Durch Loslassen des Auslösers und somit Ausschalten der Elektronik wird die Meßwertspeicherung wieder gelöscht.


Belichtungskorrektur

Eine weitere Möglichkeit, die Belichtung individuell zu beeinflussen, besteht mit dem Einstellsystem für Belichtungskorrektur (10, 26). Derartige Korrekturen sind bei stärkeren Abweichungen des Objektcharakters vom Normalobjekt, z. B. bei dunklen Motiven vor hellem Hintergrund (+ 1, +2) und bei hellen Motiven vor sehr dunklem Hintergrund (-1, -2), notwendig. Dazu Einstellring für Filmempfindlichkeit (10) anheben und Zeiger (26) zum gewünschten Korrekturwert drehen.

Daß eine Korrektur vorgenommen wurde, wird durch eine Leuchtdiode (±) am linken Sucherbildrand signalisiert. Von der Ausgangsstellung ausgehend wird beim Einstellen auf + 1 bzw. + 2 im Automatikbetrieb die Belichtungszeit um 1 bzw. 2 Belichtungswerte verlängert. Sinngemäß findet eine Verkürzung beim Einstellen auf -1 bzw. -2 statt. Dabei kann die Rastung in halben Stufen vorgenommen werden. An den Grenzen des Filmempfindlichkeitsbereiches 12 ASA und 3200 ASA ist die Korrektur von 2 Stufen ebenfalls möglich. Eine Erweiterung des Belichtungszeitenbereiches über die Werte 1 /1000 s und 40 s hinaus erfolgt durch die Korrektur nicht. Achtung! Nach derartigen Korrekturen Einsteller wieder in die Ausgangsstellung 0-Stellung bringen. Die Leuchtdiode (±) verlischt.


Teilautomatische Arbeitsweise

Wollen Sie mit einer bestimmten Belichtungszeit fotografieren, z.B. bei Reproduktionen, wissenschaftlich-technischen Aufnahmen, so ist die PRAKTICA BX 20 auf Teilautomatik umzuschalten. Es stehen feste Belichtungszeiten abgestuft von 1 s bis 1/1000 s und B für beliebig lange Zeiten zur Verfügung. Mit dem Betriebsartenwähler (21) ist die gewünschte Zeit vorzuwählen, damit ist gleichzeitig die Teilautomatik eingestellt. Wie bei der automatischen Belichtungszeitensteuerung wird durch einen leichten Druck auf den Auslöser die Kameraelektronik eingeschaltet.

Die Belichtungskontrolle erfolgt ebenfalls mit Hilfe der Leuchtdioden im Sucher. Während die zur eingestellten Belichtungszeit zugehörige Leuchtdiode blinkt, zeigt eine andere gleichzeitig die entsprechend den Lichtverhältnissen, der Filmempfindlichkeit und der vorgewählten Blendenzahl notwendige Belichtungszeit durch Dauerlicht an. (Bei Zwischenwerten leuchten zwei benachbarte Leuchtdioden gleichzeitig.) Um den Abgleich herbeizuführen, sind Blendenzahl oder Belichtungszeit so lange zu verändern, bis die Leuchtdiode in Dauerlicht übergeht. Bei der Einstellung "B" erfolgt keine Leuchtdiodenanzeige. Die Festzeiten werden durch die aufgeführten Korrekturmöglichkeiten nicht beeinflußt.


Kamerahaltung



Nebenstehende Abbildung zeigt die StandardKamerahaltung. Kamera ruhig und fest halten und den Ellenbogen am Körper abstützen. So erzielen Sie verwacklungsfreie Aufnahmen.

Blitzlichtaufnahmen

Reicht das vorhandene Licht (z. B. Innenaufnahmen) zum sicheren Fotografieren aus der Hand nicht mehr aus oder soll das Motiv zusätzlich aufgehellt werden, empfiehlt es sich zu blitzen. Es können alle Elektronenblitzgeräte mit bzw. ohne Computerblitzsteuerung und entsprechender Anpassung verwendet werden. Blitzgerät in Steckschuh (23) einschieben, die kabellose elektrische Verbindung ist damit hergestellt.

Für Elektronenblitzgeräte ohne Computersteuerung ist der Betriebsartenwähler (21) auf "~" zu stellen. Die eingestellte Belichtungszeit beträgt dann 1 /100 s.

Wird ein systemkonformes Computerblitzgerät in den Steckschuh eingesetzt und der Betriebsartenwähler (21) auf "auto" gestellt, signalisiert eine Leubhtdiode am Sucherbildrand bei "~" die Blitzbereitschaft des Systems. In diesem Moment verlischt die Automatikanzeige.

Die Blitzbereitschaft wird auch bei Verwendung eines Computerblitzgerätes, wenn der Betriebsartenwähler auf" ~ " steht, angezeigt.

Für die richtige Filmbelichtung sorgt die Blitzinnenmessung in der Kamera, d. h., das reflektierte Blitzlicht wird durch das Kameraobjektiv aufgenommen, von der Kamera ausgewertet, und über die kabellose Steckschuhverbindung erfolgt die Blitzbeeinflussung TTL-Blitzautomatik.

Das Blitz-"0. K. "-Signal, d. h. die Blitzlichtmenge reichte zur richtigen Filmbelichtung aus, ist aus der Blitzbereitschaftsanzeige abzuleiten. Leuchtet die Leuchtdiode "~" unmittelbar nach dem Aufnahmevorgang wieder auf, so ist die Ausleuchtung der soeben durchgeführten Blitzaufnahme in Ordnung, also "O.K.". In abweichenden Grenzfällen ist das "0.K."-Signal am Blitzgerät zu beachten. Die Blitzbereitschaft bleibt erhalten, auch wenn die Memory-Taste gedrückt wurde und die grüne LED bei "AEL"Meßwertspeicherung signalisiert. Eine Belichtungskorrektur, signalisiert durch die rote LED bei (±) wird durch die Blitzautomatik berücksichtigt.

Um bei Blitzbetrieb im Bereich großer Objektleuchtdichten Fehlbelichtungen zu vermeiden, wird empfohlen, sich durch Ausschalten des Computerblitzgerätes zu vergewissern, daß die der Umfeldleuchtdichte entsprechende Belichtungszeit länger als 1/125 s ist. Nähere Angaben zur Blitztechnik entnehmen Sie bitte der Blitzgerätebedienungsanleitung



Objektivwechsel


Entriegelungstaste (2) drücken und gleichzeitig Objektiv gegen den Uhrzeigersinn bis Anschlag drehen. Objektiv aus der Kamera entnehmen. PRAKTICA-Objektiv so einsetzen, daß sich die roten Markierungen (16 und 2) an Objektiv und Kamera gegenüberstehen. Objektiv gegen den Kamerakörper drücken und im Uhrzeigersinn drehen, bis Verriegelungsstift hörbar einrastet.

Mit Hilfe des PRAKTICA-Adapters können alle Original-PRAKTICA-Objektive mit Gewindeanschluß M 42x 1 angeschlossen werden.

Fremdobjektive mit Gewindeanschluß M 42x1 müssen für PRAKTICA-Kameras geeignet und für Arbeitsblendenmessung eingerichtet sein. Die PRAKTICA BX 20 arbeitet auch in Verbindung mit den Gewindeobjektiven automatisch. Lediglich die Lichtmessung erfolgt bei Arbeitsblende.


Bildschärfe einstellen

Das Scharfeinstellen ist mit Tripelmeßkeilsystem, Monoplanrasterring oder Mattring möglich.

1 Tripelmeßkeil

Dieses Keilsystem erlaubt eine sehr hohe Einstellgenauigkeit der Bildschärfe. Die optimale Einstellung ist erreicht, wenn Konturen und Linien einen natürlichen Verlauf haben. Bei Unschärfe sind die Motivkonturen im mittleren Kreissegment verschoben.

2 Monoplanrasterring

Die richtige Bildschärfe ist eingestellt, wenn das Bild innerhalb des Rasterfeldes klar und flimmerfrei sichtbar ist.

3 Mattring

Besonders günstig bei Lupen- und Mikroaufnahmen sowie bei Objektiven mit kleiner relativer Öffnung (Blendenzahl größer als 4). Das Bild muß klar und scharf im Mattring erscheinen.



Schärfentiefenanzeige



Die Grenzen des Schärfentiefenbereiches können für die gewählte Blendenzahl auf der Schärfentiefenskale (15) des Objektives abgelesen werden. Zum Beispiel: Entfernung 3 m, Blendenzahl 8-Schärfentiefe reicht von etwa 2 m bis 5 m.

Infrarotaufnahmen

Infrarotaufnahmen erfordern eine geringfügige Korrektur der Scharfeinstellung. Den beim Scharfeinstellen ermittelten Entfernungswert der Infrarotmarkierung (Hinweispfeil) auf dem Objektiv gegenüberstellen.


Auslöser




Für einfachstes Bedienen sind im Auslöser (22) mehrere Funktionen untergebracht. Bei gespannter Kamera werden durch leichtes Drükken bis zum Druckpunkt die Automatik sowie die LED's für Belichtungszeiten bzw. für Blitzbereitschaft (bei speziellen Blitzgeräten) eingeschaltet. Beim Weiterdrücken erfolgt das Auslösen des Verschlusses.

Verriegeln des Auslösers

Ungewolltes Auslösen bzw. unnötiger Stromverbrauch beim unbeabsichtigten Drücken des Auslösers im gespannten und ungespannten Zustand der Kamera lassen sich durch die Auslöserverriegelung vermeiden.

Hierzu wird die unter dem Betriebsartenwähler angeordnete Auslöserverriegelung (20) in Pfeilrichtung betätigt und damit der Auslöser gesperrt. Die Entriegelung erfolgt sinngemäß in entgegengesetzter Richtung.


Selbstauslöser

Kamera spannen, Spannhebel (4) des Selbstauslösers in Pfeilrichtung 1) bis zum Anschlag schwenken, durch Druck auf den Startknopf (3), entsprechend Pfeil 2), Selbstauslöser auslösen. Vorlaufzeit etwa 10 s. Während der Nachlaufzeit des Vorlaufwerkes Kamera nicht spannen!
Befindet sich ein eingeschalteter Motoraufzug an der Kamera, so können während der Nachlaufphase bei kurzen Belichtungszeiten mehrere Aufnahmen belichtet werden. Wird das nicht gewünscht, so ist der Motoraufzug auszuschalten. Bei Automatikbetrieb ist, um Fehlmessungen zu vermeiden, das Okular mit der Okularschutzkappe abzudecken.



Filmwechsel


Der Bildzähler (5) zeigt die bereits belichteten Bilder eines Filmes an. Ist die mit dem jeweils eingelegten Film erreichbare Anzahl von Bildern belichtet (Rotmarkierung bei 20 bzw. 36), Filmwechsel vornehmen.

Rückspulauslöser (18) bis zum Einrasten drükken, Rückspulkurbel (8) ausklappen und in Pfeilrichtung drehen, bis erhöhter Widerstand und anschließende Leichtgängigkeit das Ende des Rückspulvorganges signalisieren Rückspulknopf (9) bis zum Anschlag nach oben ziehen. Rückwand ist entriegelt und springt auf. Filmpatrone kann entnommen werden. Filmwechsel nicht in voller Sonne vornehmen.

Achtung!

Sind mehr Aufnahmen, als auf der Filmpackung angegeben, belichtet worden, kann der Spannhebel möglicherweise nicht voll geschwenktwerden.

Keine Gewaltanwendung!

Film zurückspulen und Spannhebel bis zum Anschlag schwenken.



Pflege der Kamera


  • Kamera vor Stoß, Schlag, Staub und Feuchtigkeit schützen.

  • Patronen﷓ und Spulenraum, Filmbahn und Rückwand von Zeit zu Zeit mit weichem Pinsel säubern.

  • Keine organischen Lösungsmittel wie z. B. Spiritus oder Lackverdünner zum Reinigen der Kamera verwenden.

  • Einwirkung aggressiver Dämpfe auf Kamera und Objektiv vermeiden.

  • Fingerabdrücke auf Linsenflächen von Objektiv und Okular mit Linsenreinigungspapier entfernen.

  • Spiegel, Bildfeldlinse und Verschlußlamellen nicht mit den Fingern berühren. Diese Verunreinigungen können nur von einer ServiceWerkstatt entfernt werden.

  • Zum Beseitigen von Staub wird ein Optikpinsel oder ein Blaseball empfohlen.

  • Kameras niemals längere Zeit sehr hohen oder tiefen Temperaturen aussetzen. Vermeiden Sie z. B. bei Sonneneinstrahlung die Lagerung der Kamera auf der Hutablage eines Kraftfahrzeuges.

  • Vor extremer Kälte ist die Kamera in geeigneter Weise zu schützen.

  • Beim Benutzen der Kamera in Meeresnähe oder am Strand ist Schutz gegen Salzwasser und Sprühnebel sowie gegen Sand erforderlich.

  • Vermeiden Sie plötzlichen Temperaturwechsei. Dieser kann zu Kondenswasserbildung und damit zu Korrosionsschäden führen.

  • Unterlassen Sie eigenmächtiges Eingreifen in die Kamera. Suchen Sie im Bedarfsfall eine Service-Werkstatt auf.


Wir bitten, alle Hinweise dieser Bedienungsanleitung zu beachten. Unsachgemäße Handhabung der Kamera kann zu Schäden führen, deren Behebung außerhalb unserer Garantieleistung liegt.


Durch Weiterentwicklung der PRAKTICA BX 20 können sich geringfügige Abweichungen von dieser Druckschrift ergeben.
Beitrag Forum: Praktica-Forum   Geschrieben: Mo, 26. Mai 2008 23:07   Titel: Praktica BX 20 Bedienungsanleitung

Practica BX 20 Bedienungsanleitung



Inhaltsverzeichnis

Einleitung
Technische Merkmale
Bezeichnung der Einzelteile
Vorbereitung zur Aufnahme
Batterie einlegen
Batterie prüfen
Rückwand öffnen
Film einlegen
Rückwand schließen
Aufnahmebereitschaft herstellen
Filmempfindlichkeit einstellen
Aufnahmevorgang
Automatische Belichtungszeiten
Steuerung
Vorwahl der Blendenzahl
Belichtungsautomatik, Anzeige
Auslösen
Messwertspeicherung
Belichtungskorrektur
Teilautomatische Arbeitsweise
Kamerahaltung
Blitzlichtaufnahmen
Objektivwechsel
Bildschärfe einstellen
Schärfentiefenanzeige
Infrarotaufnahmen
Auslöser
Verriegeln des Auslösers
Selbstauslöser
Filmwechsel
Pflege der Kamera




Einleitung


Mit der PRAKTICA BX 20 besitzen Sie eine hochwertige Kleinbildspiegelreflexkamera, die sich durch hohen Bedienungskomfort auszeichnet und die einen großen Spielraum für gestalterische Kreativität bietet.

In einem Bereich von 1/1000 s bis 40 s werden die Belichtungszeiten vollautomatisch gesteuert. Die Mikroelektronik der PRAKTICA BX 20 ermöglicht darüber hinaus das Fotografieren mit festen Belichtungszeiten zwischen 1/1000 s und 1 s sowie beliebig langen Belichtungszeiten mit der B-Einstellung.

Die Innenmessung erfolgt bei offener Blende und somit hellstem Sucherbild durch die elektronische Blendenwertübertragung.

Die PRAKTICA BX 20 ist mit einem System zur Blitzinnenmessung ausgerüstet. Bei Verwendung eines systemkonformen Computerblitzgerätes wird das Blitzlicht von der Kamera gemessen, ausgewertet und für die richtige Belichtung dosiert. Neben Computerblitzgeräten können auch herkömmliche Elektronenblitzgeräte verwendet werden.

Für gezielte Ober- und Unterbelichtung ist die Automatik manuell korrigierbar.

An den Rändern des übersichtlichen und hellen Sucherbildes werden durch Leuchtdioden angezeigt: die zu erwartende Belichtungszeit, Grenzwerte, Arbeitsstufen (Voll- bzw. Teilautomatik), Memofunktion, Belichtungskorrektur sowie Blitzbereitschaft einschließlich Blitz"0.K."Signal bei systemkonformen Computerblitzgeräten.

Am unteren Sucherbildrand sind die vorgewählte Blendenzahl und die Anzeige für den Kameraspannzustand sichtbar.

Die PRAKTICA BX 20 verfügt über einen Winderanschluß und gestattet in bekannter Weise den Anschluss des PRAKTICA-Zubehörs.



Technische Merkmale


Einäugige Spiegelreflexkamera für Bildformat 24 mm x 36 mm, Innenmessung bei Offenblende durch elektronische Blendenwertübertragung

Automatische elektronische Belichtungszeitensteuerung stufenlos von 1 /1000 s bis 40 s Automatik auf Teilautomatik umschaltbar, dabei Festzeiten von 1 /1000 s bis 1 s

Elektronische Blitzinnenmessung und Blitzdosierung bei Verwendung systemkonformer Computerblitzgeräte, Synchronisation (ca. 1 /100 s)

Blitzbereitschaftsanzeige (und Blitz "O.K."-Signal) im Sucherbild

Belichtungszeitenvorinformation im Sucher durch Leuchtdioden

Grenzwertanzeige bei Unter- bzw. Überbelichtung

Eingestellte Blende am unteren Sucherbildrand sichtbar

Information über den Spannzustand der Kamera

Manuelle Korrektur der Belichtung im Bereich von ± 2 Belichtungsstufen und Anzeige der Korrektur durch rote Leuchtdiode im Sucherbild bei±

Meßwertspeicherung und Anzeige dieser Funktion durch grüne Leuchtdiode im Sucherbild be AEL (automatic exposure lock)

Selbstauslöser (ca. 10 s) mit Startknopf und
Doppelfunktion als Abblendhebel zur Schär-
fentiefenkontrolle

Bildeinstellsystem: Fresnellinse mit neuartigem, diagonal angeordneten Tripelmeßkeil, Monoplanrasterring und Mattring

Sucherbildgröße ca. 95% der Bildseiten

PRAKTICA-Bajonett (Anlagemaß 44,4 mm,
Innendurchmesser 48,5 mm)

Anschluß für Motoraufzug

Memohalter an der Kamerarückwand

Batteriekontrolle durch Information im Sucher

Energiequelle: Primär-Batterie 6V (z.B.
PX 28/Mallory)

Silizium-Fotosensor als Lichtempfänger

Meß- und Steuerbereich: 0-17 EV bei
100 ASA und Blende 1,4

Abmessungen (Gehäuse):
141 mmx88 mmx49 mm

Masse (Gehäuse ohne Batterie): 510 g



  1. Filtergewinde
  2. Entriegelungstaste
  3. Auslöser für Selbstauslöser
  4. Spannhebel für Selbstauslöser (Betätigung
    gegen Uhrzeigerrichtung), Abblendhebel zur
    Schärfentiefenkontrolle (Betätigung in Uhrzei
    gerrichtung)
  5. Bildzähler
  6. Spannhebel
  7. Fenster für Blendenwerteinspiegelung
  8. Rlückspukurbel
  9. Rückspulknopf
  10. Einstellring für Filmempfindlichkeit
  11. Entriegelungstaste Filmempfindlichkeit
  12. Speicher- und Batterieprüftaste (Memory-Taste)
  13. Blendeneinstellring
  14. Entfernungseinstellring
  15. Schärfentiefenskala und Infrarotpunkt
  16. Einsetzmarkierung am Objektiv
  17. Trageöse
  18. Rückspulauslöser
  19. Marke für Automatik-Betrieb
  20. Auslöserverriegelung
  21. Betriebsartenwähler für Belichtungszeiten und Automatik
  22. Auslöser mit Anschluß für Drahtauslöser
  23. Steckschuh mit Mittenkontakt
  24. Mittenkontakt
  25. Computerblitz-Koppelstelle
  26. Einstellzeiger für Belichtungskorrektur mit Index
  27. Rückwand
  28. Filmaufwickelspule
  29. Filmtransportrolle
  30. Verschlußlamellen
  31. Patronenraum
  32. Okularfassung mit Zubehörwechselstelle
  33. Steckrahmen (Memohalter)
  34. Deckel für Batterieraum
  35. Stativgewinde
  36. Führungskanal für Motoraufzug
  37. Kupplung für Motorauzug
  38. Arretierung für Motoraufzug
  39. Kontakte für Motoraufzug
  40. Marke (Einsetzhilfe fürBatterieraumdeckel



Batterie einlegen


Zur Stromversorgung des gesamten Elektroniksystems wird eine Energiequelle von 6 Volt benötigt. Das kann eine Alkali-Mangan-, SilberOxid oder Lithiumbatterie sein.

Es lassen sich jedoch auch 4 Knopfzellen (z. B. LR 44) in Batteriehülse (Bestell.﷓Nr. 961 363) verwenden.

Eine frische Batterie reicht bei normalem Gebrauch der Kamera ca. 2 Jahre.

Beim Einlegen Batterieraumdeckel (34) in Pfeilrichtung schieben und herausschwenken. Kontakte im Batterieraum und an der Batterie mit trockenem Tuch säubern. Batterie mit Pluspol gegen den federnden Kontakt drücken (Polaritätskennzeichnung im Batterieraum) und hineinkippen. Deckel mit Pfeil in Richtung der Markierung einsetzen, niederdrücken und einschnappen lassen.

Es ist ratsam, die Kontaktstellen an der Batterie und im Batterieraum Von Zeit zu Zeit nachzusehen und ggf. zu reinigen. Gegen tiefe Temperaturen ist die Batterie empfindlich und sollte in geeigneter Weise geschützt werden.

Batterie bei längerer Nichtbenutzung aus dem Batterieraum der Kamera entfernen.


Batterie prüfen

Verschluß muß gespannt sein. Auslöser (22) und dann Memorytaste (12) drücken. Ist die Leuchtdiodenanzeige gut sichtbar, ist die Batterie in Ordnung. Bei verbrauchter Batterie verlöschen die Leuchtdioden am rechten Sucherbildrand. Bei den Einstellungen "B" und "~" ist keine Batterieprüfung möglich.




Rückwand öffnen




Rückspulknopf (9) bis zum Anschlag nach oben ziehen, so daß sich die Rückwandverriegelung löst. Rückwand vollständig öffnen, dabei springt der Bildzähler (5) selbständig in die Ausgangsstellung zurück.


Film einlegen

Achtung! Vor dem Filmeinlegen sollte der Betriebsartenwähler auf eine kurze Festzeit eingestellt werden, da sich bei der Einstellung Automatik "auto" eine lange Belichtungszeit bilden kann. Bis zum Ende des Verschlußablaufens ist der Spannhebel gesperrt. Keine Gewaltanwendung!

Gegebenenfalls können Sie eine lange Belichtungszeit durch Umstellen von "auto" auf "B" abbrechen. Eine lange Belichtungszeit wird bei Einstellung "auto" auch beim Auslösen ohne eingesetztes Objektiv gebildet.

Filmpatrone in den Patronenraum (31) einlegen. Rückspulknopf (9) wieder vollständig hineindrükken, ggf. dabei drehen. Filmanfang mindestens 1 cm in den Schlitz der Aufwickelspule (28) einführen, den Spannhebel vorsichtig betätigen, bis die Zähne der Filmtransportrolle (29) in die Perforation des Filmes eingreifen.

Spannhebel bis an den Endanschlag bewegen und zurückführen. Kamera durch Druck auf den Auslöseknopf (22) auslösen.

Rückwand schließen

Rückwand in der Mitte der Riegelseite fassen und gegen den Kamerakörper drücken, bis die Verriegelung hörbar einrastet.



Aufnahmebereitschaft herstellen


Der Spannhebel (6) läßt sich etwas ausschwenken, ohne den Aufzugsvorgang bereits einzuleiten. Diese Bereitschaftsstellung erhöht die Griffsicherheit bei schneller Bildfolge. Spannhebel vollständig bis zum Anschlag schwenken, zurückführen und Kamera mit Auslöser (22) auslösen. Vorgang wiederholen und nochmals spannen, bis der automatische Bildzähler (5) die Bildzahl " 1 " anzeigt. Über den Spannzustand der Kamera wird am unteren Sucherbildrand informiert: Blendenzahlbild rot -Kamera ungespannt, Blendenzahlbild farblos -Kamera gespannt Der ordnungsgemäße Filmtransport ist am Mitdrehen des Rückspulknopfes (9) bei Betätigung des Spannhebels (6) kontrollierbar.


Filmempfindlichkeit einstellen



Entriegelungstaste (11) drücken und durch gleichzeitiges Drehen des Einstellringes (10) die auf der Filmpackung angegebene Filmempfindfichkeit (ASA-Wert) gegenüber dem Index auf dem Korrekturwertzeiger (26) einstellen. Als Gedächtnisstütze über die Art des eingelegten Filmes kann die abgetrennte Deckellasche der Filmschachtel in den Steckrahmen (Memohalter, 33) eingeschoben werden.



Automatische Bellichtungszeitensteuerung


Die PRAKTICA BX 20 arbeitet bei AutomatikEinstellung "auto" stufenlos und automatisch im Belichtungszeitenbereich von 1/1000 s bis 40 s. Die elektronische Belichtungszeitensteuerung erfolgt entsprechend den Lichtverhältnissen, der vorgewählten Blendenzahl und der Filmempfindlichkeit. Leuchtdioden im Sucherbildrand informieren über die angesteuerte Belichtungszeit. Bei "OVER" oder "UNDER" weisen sie auf Uberbzw. Unterschreitung des Belichtungszeitenbereiches hin.

Durch die Innenmessung werden die Belichtung beeinflussende Faktoren, wie Brennweite des Objektives, Filter, auszugsverlängerndes Zubehöre, automatisch berücksichtigt.

Werden über Adapter Objektive mit PRAKTICA-Gewindeanschluß M 42X1 verwendet, erfolgt die Lichtmessung automatisch bei Arbeitsblende.


Vorwahl der Blendenzahl



Durch Drehen des Blendenringes (13) die gewünschte Blendenzahl der Marke auf der Objektivfassung gegenüberstellen. Die eingestellte Blendenzahl ist dabei am unteren Rand des Sucherbildes eingespiegelt.

Wird der Hebel (4) in Pfeilrichtung betätigt, schließt sich die Blende entsprechend der eingestellten Blendenzahl und die Schärfäntiefe ist im Sucherbild beurteilbar.


Belichtungsautomatik, Anzeige

Betriebsartenwähler (21) auf Automatik "auto" einstellen. Durch leichten Druck auf den Auslöser (22) wird die Elektronik eingeschaltet. Im Sucherbild kann die von der Automatik ermittelte Belichtungszeit durch Leuchtdioden überwacht und, falls sie nicht motivgerecht erscheint, durch Vorwahl einer anderen Blendenzahl korrigiert werden. Dabei ist jeder Zeitstufe im Bereich von 1/1000 s bis 8 s eine Leuchtdiode zugeordnet; Zwischenwerte der stufenlosen Einstellung werden durch gleichzeitiges Leuchten zweier benachbarter Dioden angezeigt. Belichtungszeiten zwischen 8 s und 40 s signalisiert die Leuchtdiode durch Dauerlicht bei "UNDER", Über- bzw. Unterschreitung der Werte 1/1000 s bzw. 40 s werden durch Blinklicht bei "OVER" bzw. "UNDER" angezeigt. In diesem Fall wird der Verschluß stets mit 1 /1000 s bzw. 40 s gesteuert. Bilden sich Belichtungszeiten von 1/15 s und länger, ist die Verwendung eines Stativs oder einer anderen geeigneten festen Unterlage erforderlich.


Auslösen


Nach Kontrolle der Belichtungszeit im Sucher ist durch Weiterdrücken des Auslösers (22) der Verschluß auszulösen. Beim nachfolgenden Loslassen des Auslösers wird die Elektronik automatisch abgeschaltet.

Das Loslassen des Auslösers während langer Belichtungszeiten hat keinen Einfluß auf den Belichtungsvorgang. In diesem Fall erfolgt das Abschalten der Elektronik nach dem vollständigen Verschlußablauf.

Soll bei einer sehr langen Belichtungszeit der Ablauf vorzeitig abgebrochen werden (z. B. nach irrtümlichem Auslösen), so ist der Betriebsartenwähler (21) kurzzeitig auf "B" zu stellen.


Meßwertspeicherung

Weist das Fotomotiv einen besonders großen Kontrast auf (z.B. dunkel bekleidete Personen imsonnenbeschienenenSchneeoderhellerAufnahm egegenstand vor dunklem Hintergrund), ist der Belichtungswert durch individuelle Messung des wichtigsten Bildelementes aus Nahdistanz zu ermitteln. Der bei der Nahmessung ermittelte Meßwert wird gespeichert, und der Bildausschnitt kann danach verändert werden, ohne daß sich eine andere Belichtung ergibt. Zur Speicherung des Meßwertes die Kamera spannen, den Auslöser (22) leicht drücken (Meßvorgang) und kurzzeitig die Memory-Taste (12) betätigen (Meßwertspeicherung, die Leuchtdiode neben AEL leuchtet).

Danach erfolgt bis zum Auslösen des Verschlusses keine neue Messung mehr; der Verschluß bildet die Belichtungszeit entsprechend dem gespeicherten Wert. Durch Loslassen des Auslösers und somit Ausschalten der Elektronik wird die Meßwertspeicherung wieder gelöscht.


Belichtungskorrektur

Eine weitere Möglichkeit, die Belichtung individuell zu beeinflussen, besteht mit dem Einstellsystem für Belichtungskorrektur (10, 26). Derartige Korrekturen sind bei stärkeren Abweichungen des Objektcharakters vom Normalobjekt, z. B. bei dunklen Motiven vor hellem Hintergrund (+ 1, +2) und bei hellen Motiven vor sehr dunklem Hintergrund (-1, -2), notwendig. Dazu Einstellring für Filmempfindlichkeit (10) anheben und Zeiger (26) zum gewünschten Korrekturwert drehen.

Daß eine Korrektur vorgenommen wurde, wird durch eine Leuchtdiode (±) am linken Sucherbildrand signalisiert. Von der Ausgangsstellung ausgehend wird beim Einstellen auf + 1 bzw. + 2 im Automatikbetrieb die Belichtungszeit um 1 bzw. 2 Belichtungswerte verlängert. Sinngemäß findet eine Verkürzung beim Einstellen auf -1 bzw. -2 statt. Dabei kann die Rastung in halben Stufen vorgenommen werden. An den Grenzen des Filmempfindlichkeitsbereiches 12 ASA und 3200 ASA ist die Korrektur von 2 Stufen ebenfalls möglich. Eine Erweiterung des Belichtungszeitenbereiches über die Werte 1 /1000 s und 40 s hinaus erfolgt durch die Korrektur nicht. Achtung! Nach derartigen Korrekturen Einsteller wieder in die Ausgangsstellung 0-Stellung bringen. Die Leuchtdiode (±) verlischt.


Teilautomatische Arbeitsweise

Wollen Sie mit einer bestimmten Belichtungszeit fotografieren, z.B. bei Reproduktionen, wissenschaftlich-technischen Aufnahmen, so ist die PRAKTICA BX 20 auf Teilautomatik umzuschalten. Es stehen feste Belichtungszeiten abgestuft von 1 s bis 1/1000 s und B für beliebig lange Zeiten zur Verfügung. Mit dem Betriebsartenwähler (21) ist die gewünschte Zeit vorzuwählen, damit ist gleichzeitig die Teilautomatik eingestellt. Wie bei der automatischen Belichtungszeitensteuerung wird durch einen leichten Druck auf den Auslöser die Kameraelektronik eingeschaltet.

Die Belichtungskontrolle erfolgt ebenfalls mit Hilfe der Leuchtdioden im Sucher. Während die zur eingestellten Belichtungszeit zugehörige Leuchtdiode blinkt, zeigt eine andere gleichzeitig die entsprechend den Lichtverhältnissen, der Filmempfindlichkeit und der vorgewählten Blendenzahl notwendige Belichtungszeit durch Dauerlicht an. (Bei Zwischenwerten leuchten zwei benachbarte Leuchtdioden gleichzeitig.) Um den Abgleich herbeizuführen, sind Blendenzahl oder Belichtungszeit so lange zu verändern, bis die Leuchtdiode in Dauerlicht übergeht. Bei der Einstellung "B" erfolgt keine Leuchtdiodenanzeige. Die Festzeiten werden durch die aufgeführten Korrekturmöglichkeiten nicht beeinflußt.


Kamerahaltung



Nebenstehende Abbildung zeigt die StandardKamerahaltung. Kamera ruhig und fest halten und den Ellenbogen am Körper abstützen. So erzielen Sie verwacklungsfreie Aufnahmen.

Blitzlichtaufnahmen

Reicht das vorhandene Licht (z. B. Innenaufnahmen) zum sicheren Fotografieren aus der Hand nicht mehr aus oder soll das Motiv zusätzlich aufgehellt werden, empfiehlt es sich zu blitzen. Es können alle Elektronenblitzgeräte mit bzw. ohne Computerblitzsteuerung und entsprechender Anpassung verwendet werden. Blitzgerät in Steckschuh (23) einschieben, die kabellose elektrische Verbindung ist damit hergestellt.

Für Elektronenblitzgeräte ohne Computersteuerung ist der Betriebsartenwähler (21) auf "~" zu stellen. Die eingestellte Belichtungszeit beträgt dann 1 /100 s.

Wird ein systemkonformes Computerblitzgerät in den Steckschuh eingesetzt und der Betriebsartenwähler (21) auf "auto" gestellt, signalisiert eine Leubhtdiode am Sucherbildrand bei "~" die Blitzbereitschaft des Systems. In diesem Moment verlischt die Automatikanzeige.

Die Blitzbereitschaft wird auch bei Verwendung eines Computerblitzgerätes, wenn der Betriebsartenwähler auf" ~ " steht, angezeigt.

Für die richtige Filmbelichtung sorgt die Blitzinnenmessung in der Kamera, d. h., das reflektierte Blitzlicht wird durch das Kameraobjektiv aufgenommen, von der Kamera ausgewertet, und über die kabellose Steckschuhverbindung erfolgt die Blitzbeeinflussung TTL-Blitzautomatik.

Das Blitz-"0. K. "-Signal, d. h. die Blitzlichtmenge reichte zur richtigen Filmbelichtung aus, ist aus der Blitzbereitschaftsanzeige abzuleiten. Leuchtet die Leuchtdiode "~" unmittelbar nach dem Aufnahmevorgang wieder auf, so ist die Ausleuchtung der soeben durchgeführten Blitzaufnahme in Ordnung, also "O.K.". In abweichenden Grenzfällen ist das "0.K."-Signal am Blitzgerät zu beachten. Die Blitzbereitschaft bleibt erhalten, auch wenn die Memory-Taste gedrückt wurde und die grüne LED bei "AEL"Meßwertspeicherung signalisiert. Eine Belichtungskorrektur, signalisiert durch die rote LED bei (±) wird durch die Blitzautomatik berücksichtigt.

Um bei Blitzbetrieb im Bereich großer Objektleuchtdichten Fehlbelichtungen zu vermeiden, wird empfohlen, sich durch Ausschalten des Computerblitzgerätes zu vergewissern, daß die der Umfeldleuchtdichte entsprechende Belichtungszeit länger als 1/125 s ist. Nähere Angaben zur Blitztechnik entnehmen Sie bitte der Blitzgerätebedienungsanleitung



Objektivwechsel


Entriegelungstaste (2) drücken und gleichzeitig Objektiv gegen den Uhrzeigersinn bis Anschlag drehen. Objektiv aus der Kamera entnehmen. PRAKTICA-Objektiv so einsetzen, daß sich die roten Markierungen (16 und 2) an Objektiv und Kamera gegenüberstehen. Objektiv gegen den Kamerakörper drücken und im Uhrzeigersinn drehen, bis Verriegelungsstift hörbar einrastet.

Mit Hilfe des PRAKTICA-Adapters können alle Original-PRAKTICA-Objektive mit Gewindeanschluß M 42x 1 angeschlossen werden.

Fremdobjektive mit Gewindeanschluß M 42x1 müssen für PRAKTICA-Kameras geeignet und für Arbeitsblendenmessung eingerichtet sein. Die PRAKTICA BX 20 arbeitet auch in Verbindung mit den Gewindeobjektiven automatisch. Lediglich die Lichtmessung erfolgt bei Arbeitsblende.


Bildschärfe einstellen

Das Scharfeinstellen ist mit Tripelmeßkeilsystem, Monoplanrasterring oder Mattring möglich.

1 Tripelmeßkeil

Dieses Keilsystem erlaubt eine sehr hohe Einstellgenauigkeit der Bildschärfe. Die optimale Einstellung ist erreicht, wenn Konturen und Linien einen natürlichen Verlauf haben. Bei Unschärfe sind die Motivkonturen im mittleren Kreissegment verschoben.

2 Monoplanrasterring

Die richtige Bildschärfe ist eingestellt, wenn das Bild innerhalb des Rasterfeldes klar und flimmerfrei sichtbar ist.

3 Mattring

Besonders günstig bei Lupen- und Mikroaufnahmen sowie bei Objektiven mit kleiner relativer Öffnung (Blendenzahl größer als 4). Das Bild muß klar und scharf im Mattring erscheinen.


Schärfentiefenanzeige



Die Grenzen des Schärfentiefenbereiches können für die gewählte Blendenzahl auf der Schärfentiefenskale (15) des Objektives abgelesen werden. Zum Beispiel: Entfernung 3 m, Blendenzahl 8-Schärfentiefe reicht von etwa 2 m bis 5 m.

Infrarotaufnahmen

Infrarotaufnahmen erfordern eine geringfügige Korrektur der Scharfeinstellung. Den beim Scharfeinstellen ermittelten Entfernungswert der Infrarotmarkierung (Hinweispfeil) auf dem Objektiv gegenüberstellen.


Auslöser[/highlight]




Für einfachstes Bedienen sind im Auslöser (22) mehrere Funktionen untergebracht. Bei gespannter Kamera werden durch leichtes Drükken bis zum Druckpunkt die Automatik sowie die LED's für Belichtungszeiten bzw. für Blitzbereitschaft (bei speziellen Blitzgeräten) eingeschaltet. Beim Weiterdrücken erfolgt das Auslösen des Verschlusses.

Verriegeln des Auslösers

Ungewolltes Auslösen bzw. unnötiger Stromverbrauch beim unbeabsichtigten Drücken des Auslösers im gespannten und ungespannten Zustand der Kamera lassen sich durch die Auslöserverriegelung vermeiden.

Hierzu wird die unter dem Betriebsartenwähler angeordnete Auslöserverriegelung (20) in Pfeilrichtung betätigt und damit der Auslöser gesperrt. Die Entriegelung erfolgt sinngemäß in entgegengesetzter Richtung.


Selbstauslöser

Kamera spannen, Spannhebel (4) des Selbstauslösers in Pfeilrichtung 1) bis zum Anschlag schwenken, durch Druck auf den Startknopf (3), entsprechend Pfeil 2), Selbstauslöser auslösen. Vorlaufzeit etwa 10 s. Während der Nachlaufzeit des Vorlaufwerkes Kamera nicht spannen!
Befindet sich ein eingeschalteter Motoraufzug an der Kamera, so können während der Nachlaufphase bei kurzen Belichtungszeiten mehrere Aufnahmen belichtet werden. Wird das nicht gewünscht, so ist der Motoraufzug auszuschalten. Bei Automatikbetrieb ist, um Fehlmessungen zu vermeiden, das Okular mit der Okularschutzkappe abzudecken.



Filmwechsel


Der Bildzähler (5) zeigt die bereits belichteten Bilder eines Filmes an. Ist die mit dem jeweils eingelegten Film erreichbare Anzahl von Bildern belichtet (Rotmarkierung bei 20 bzw. 36), Filmwechsel vornehmen.

Rückspulauslöser (18) bis zum Einrasten drükken, Rückspulkurbel (8) ausklappen und in Pfeilrichtung drehen, bis erhöhter Widerstand und anschließende Leichtgängigkeit das Ende des Rückspulvorganges signalisieren Rückspulknopf (9) bis zum Anschlag nach oben ziehen. Rückwand ist entriegelt und springt auf. Filmpatrone kann entnommen werden. Filmwechsel nicht in voller Sonne vornehmen.

Achtung!

Sind mehr Aufnahmen, als auf der Filmpackung angegeben, belichtet worden, kann der Spannhebel möglicherweise nicht voll geschwenktwerden.

Keine Gewaltanwendung!

Film zurückspulen und Spannhebel bis zum Anschlag schwenken.



Pflege der Kamera


  • Kamera vor Stoß, Schlag, Staub und Feuchtigkeit schützen.

  • Patronen﷓ und Spulenraum, Filmbahn und Rückwand von Zeit zu Zeit mit weichem Pinsel säubern.

  • Keine organischen Lösungsmittel wie z. B. Spiritus oder Lackverdünner zum Reinigen der Kamera verwenden.

  • Einwirkung aggressiver Dämpfe auf Kamera und Objektiv vermeiden.

  • Fingerabdrücke auf Linsenflächen von Objektiv und Okular mit Linsenreinigungspapier entfernen.

  • Spiegel, Bildfeldlinse und Verschlußlamellen nicht mit den Fingern berühren. Diese Verunreinigungen können nur von einer ServiceWerkstatt entfernt werden.

  • Zum Beseitigen von Staub wird ein Optikpinsel oder ein Blaseball empfohlen.

  • Kameras niemals längere Zeit sehr hohen oder tiefen Temperaturen aussetzen. Vermeiden Sie z. B. bei Sonneneinstrahlung die Lagerung der Kamera auf der Hutablage eines Kraftfahrzeuges.

  • Vor extremer Kälte ist die Kamera in geeigneter Weise zu schützen.

  • Beim Benutzen der Kamera in Meeresnähe oder am Strand ist Schutz gegen Salzwasser und Sprühnebel sowie gegen Sand erforderlich.

  • Vermeiden Sie plötzlichen Temperaturwechsei. Dieser kann zu Kondenswasserbildung und damit zu Korrosionsschäden führen.

  • Unterlassen Sie eigenmächtiges Eingreifen in die Kamera. Suchen Sie im Bedarfsfall eine Service-Werkstatt auf.


Wir bitten, alle Hinweise dieser Bedienungsanleitung zu beachten. Unsachgemäße Handhabung der Kamera kann zu Schäden führen, deren Behebung außerhalb unserer Garantieleistung liegt.


Durch Weiterentwicklung der PRAKTICA BX 20 können sich geringfügige Abweichungen von dieser Druckschrift ergeben.
Beitrag Forum: Fotowiki   Geschrieben: Mi, 30. Apr 2008 11:28   Titel: Nachtfotografie


Nachtfotografie/Nachtaufnahmen


Nachtaufnahmen oder auch Nachtfotografien wird ein Bereich der Themenfotografie bezeichnet, bei dem fotografische Aufnahmen bei speziellen Lichtverhältnissen – in der Dämmerung, bei Anbruch der Nachtstimmung sowie in Form von Langzeitbelichtungen in der Nacht unter Verwendung von Belichtungszeiten von einigen Sekunden bis Minuten durchgeführt werden. Sie bilden eine besonders schwierige Gruppe von fotografischen Aufnahmen. Die bevorzugten Motive sind Architektur, Stadtansichten oder Landschaften. Nicht selten werden auch Himmelsobjekte in das Motiv mit einbezogen, so dass der Übergang zur Astrofotografie fließend ist. Verwandte fotografische Genres sind die Astro- und die Landschaftsfotografie, in denen ähnliche Arbeitstechniken und Bildgestaltungen verwendet werden.

In Nachtfotografien treten aufgrund der relativ langen Belichtungen (einige Sekunden bis Minuten) fotografische Effekte wie der Schwarzschildeffekt (in der analogen Fotografie) oder vermehrtes Rauschen (in der digitalen Fotografie) in Erscheinung (siehe Abschnitt Erläuterung einzelner Effekte).

Voraussetzung für Nachtfotografien ist ein sicherer Stand der Kamera, hier bietet sich die Nutzung eines Stativs an. Lichtstarke Wechselobjektive helfen bei der Bildgestaltung, da sie ein vergleichsweise helles Sucherbild ermöglichen. Hochempfindliche Filme können eingesetzt werden, um den Schwarzschildeffekt zu reduzieren, häufig wird jedoch mehr Wert auf die bessere Schärfe, geringere Körnigkeit und kräftigere Farbwiedergabe normalempfindlicher Filme gelegt. Eine besonders attraktive Zeit für Nachtfotografien ist die so genannte Blaue Stunde, also die Dämmerung.

Aus technischer Sicht sind auch die meisten Fotografien von Sonnenuntergängen zu den Nachtaufnahmen zu zählen. Verglichen mit anderen fotografischen Genres kennzeichnen Nachtaufnahmen folgende Merkmale, die auftreten können, aber nicht alle müssen:
  • wenig Licht (z. B. während der so genannten Blaue Stunde),
  • Kunstlicht mit unsicherer Bestimmung der Farbtemperatur,
  • Verwendung aufwändigerer Technik als sonst üblich.


Die Available-Light-Fotografie ist im Gegensatz zu Nachtaufnahmen nicht an Tageszeiten gebunden. In der Available-light-Fotografie werden vergleichsweise kurze Belichtungszeiten verwendet. Ihr gestalterisches Ziel ist das Einfangen der Lichtstimmung vor Ort auch tagsüber z. B. in geschlossenen Räumen, ohne Zuhilfenahme zusätzlicher Lichtquellen wie Blitzlicht.



Besonderheiten


Bei Nachtaufnahmen sind einige Besonderheiten zu beachten, die sonst nicht oder weniger intensiv auftreten:

  • Filmkorn bzw. Bildrauschen
  • Lichthof
  • Schwarzschildeffekt


Gerade bei Nachtaufnahmen erreicht man oft enttäuschende Ergebnisse, weil das fertige Bild nicht die Stimmung wiedergibt, die man selbst erlebt hat. Dies betrifft insbesondere Farbtemperatur und Filmkorn bzw. Rauschen sowie Bildunschärfen wegen der sehr langen Belichtungszeiten und großen Blendenöffnungen.

Filmempfindlichkeit

Dabei ist es unerheblich ob man analog oder digital fotografiert: Es gibt sowohl hochempfindliche Filme als auch ebenso lichtempfindliche Digitalsensoren (handelsüblich derzeit bis ISO 3200/36° ohne Push-Entwicklung). Im Gegensatz zur Available-Light-Fotografie wird man für Nachtaufnahmen meist jedoch aufgrund der höheren Farbsättigung und des geringeren Korns niedrigempfindliche Filme einsetzen; dabei muss allerdings der Schwarzschildeffekt in der Belichtungszeit kompensiert werden.


Farbwiedergabe


Aufgrund der Fähigkeit der menschlichen Wahrnehmung zur chromatischen Adaption können Menschen die exakte Farbtemperatur einer Lichtquelle nicht objektiv beurteilen; die subjektiv wahrgenommene Farbstimmung weicht darüber hinaus auch von der Sensibilisierung der fotografischen Emulsion bzw. vom automatischen Weißabgleich der Kamera ab, da diese auf standardisierte „Normalbedingungen“ eingestellt sind; bei Nachtaufnahmen kommt in der Praxis häufig noch als zusätzliche Problematik das Mischlicht aus Lichtquellen unterschiedlicher Farbtemperatur hinzu.

Objektivieren kann man diese Effekte nur mit Hilfe eines fotometrischen Belichtungsmessers (z. B. Gossen Mastersix in Verbindung mit Vorsatzgerät PROFi-color), wobei allerdings für exakte Messungen eine Lichtintensität von mindestens 10 Lux erforderlich ist (etwa 60-Watt-Glühbirne auf 1,5 Meter Entfernung in einem abgedunkelten Raum). Gerade unter den Bedingungen einer Nachtaufnahme wird es also für den Fotoamateur schwierig, die Lichtsituation objektiv zu bestimmen. Faustregeln gibt es nicht. Mit ein wenig Erfahrung und einer Farbtemperaturtabelle lassen sich jedoch die Wirkungen von Kunstlicht auf fotografische Emulsionen oder digitale Sensoren recht gut abschätzen.

Körnung und Rauschen

Die grobe Körnung eines fotografischen Films wird von manchen Fotografen gerne in Kauf genommen und als Effekt bewusst eingesetzt; legt man jedoch Wert auf eine feine Körnung und hohe Kantenschärfe, sollten Filme mit Empfindlichkeiten über ISO 200/24° unbedingt vermieden werden. Eine höhere Präzision der Belichtung erzielt man mit Diafilmen, während Negativfilme einen höheren Belichtungsspielraum bieten. Spezialfilme wie z. B. 'Kodak Professional Ektapress Film PJ800' können bis 6400 ASA belichtet werden und haben dabei eine noch akzeptable Körnung, die mit herkömmlichen 400-ASA-Filmen vergleichbar ist. Allerdings sind solche Filme und deren Entwicklung sehr teuer.

In der Digitalfotografie weisen nahezu alle aktuellen Kameramodelle ein Dunkelrauschen auf, das teilweise durch Algorithmen der Kameraelektronik kompensiert – oder auch verschlimmert – wird. Zu den besten Ergebnissen gelangt man mit Empfindlichkeitseinstellungen um 100 ASA in Verbindung mit dem jeweiligen Rohdatenformat der Kamera.

Das Rohdatenbild lässt sich dann bei der Bildbearbeitung mit speziellen Hilfsprogrammen wie Noise Ninja oder Neatimage, gezielt entrauschen und beispielsweise mit Photokit Sharpener oder FocalBlade nachschärfen. Soll das Rohdatenformat vermieden werden, hilft zweimaliges Belichten, zuerst mit offenem Verschluss und dann mit geschlossenem,so kann die Kamera das Rauschen teilweise herrausrechnen.


Erläuterung einzelner Effekte


Die folgenden Bilder wurden mit verschiedenen Aufnahmetechniken angefertigt und zeigen einige der vorher beschriebenen Effekte:

Unschärfe

Image


Passeig de Gracia in der Innenstadt von Barcelona


Aufnahmetechnik:

  • EXA Rheinmetall
  • 2,8/50 Festbrennweite
  • KodaChrome 25
  • f=5,6 / ca. 2 s


Obwohl die Kamera an eine Laterne gedrückt wurde, ist das Bild insgesamt unscharf, bei den Menschen erscheint unabwendbar Bewegungsunschärfe.

Farbtemperatur

Image

Tossa de Mar an der spanischen Costa Brava

Aufnahmetechnik:

  • Canon EOS 50 E
  • 1,8/50 Festbrennweite
  • Kodak Gold 100
  • f=2,0 / 1/15 s


Der Farbstich fällt besonders im rechten Bildteil auf. Das gesamte Bild wirkt wesentlich wärmer als es ursprünglich der Fall war. Die Beleuchtung der Burg erfolgt mit wärmeren Lampen als die Straßenbeleuchtung. Die Lampen wirken zwar wärmer, als sie in der Aufnahmesituation wahrgenommen wurden, dies wird aber im fertigen Bild meist als angenehm empfunden.

Lichthof

Image

Lichterträume im Familiengarten Eberswalde

Aufnahmetechnik:

  • Canon G5
  • f=8 / 1 s


Den Lichthof kann man bei allen im Bild sichtbaren Lichtquellen beobachten, besonders in der unteren Bildmitte und rechts beim roten Licht. Selbst die angestrahlten Blätter links oben überstrahlen.


Stimmung

Aufnahmetechnik:

  • Ricoh RDC-i 500
  • f=2,8 / 1/15 s


Das Originalbild gibt die (physikalisch) korrekten Farben wieder. Es wirkt etwas kraftlos, das Ergebnis ist nicht unbedingt befriedigend. Durch gezielte Farbkorrekturen am Computer kann die ursprünglich gesehene Stimmung bzw. eine übertriebene, kitschige Postkartenatmosphäre erreicht werden (Bilder 2 und 3).

Image

Sonnenuntergang in Dagebüll an der Nordsee, fast unbearbeitete Datei aus der Kamera

Image

Bild 2 - kanalgetrennte Tonwertkorrektur auf die tatsächlich vorhandenen Farbbereiche

Image

Bild 3 - kanalgetrennte Tonwertkorrektur mit drastischer Überbetonung des Rot- Kanals und Zurückdrängung von Grün und Blau


Aufnahmetechnik


Für Nachtaufnahmen ist sehr preiswerte Fototechnik nur bedingt geeignet. Die Kamera muss ein abschaltbares Blitzgerät besitzen und möglichst über ein Stativgewinde verfügen; bei Analogkameras sollte die Filmempfindlichkeit manuell einstellbar sein bzw. bei Digitalkameras eine manuelle Empfindlichkeitswahl möglich sein.

Als Notlösung kann man bei preiswerten Kameras den Blitz abdecken und darauf hoffen, dass die Kameraelektronik den Rest macht. Empfehlenswert ist der Belichtungsmodus manuell sowie manuelle Entfernungseinstellung, da einige Autofokus-Systeme in lichtschwacher Umgebung oft Probleme bereiten.

Lichtstarke Wechselobjektive unterstützen die Arbeit, da sie die manuelle Fokussierung mittels der Einstellscheibe vereinfachen, sie sind aber nicht zwingend erforderlich.


Weitere Beispielfotos




Hofkirche von Dresden



Am Festspielhaus Hellerau



Sternspuraufnahme mit Einbau von Landschaft



Flughafen Dresden


Siehe auch


  • Langzeitbelichtung
  • Chromatische Aberration
  • Dynamic Range Increase



Weblinks


Beitrag Forum: Fotowissen   Geschrieben: Fr, 22. Feb 2008 19:11   Titel: Lange Zeiten Bringen Mehr Atmosphäre

Warum eigentlich immer mit "hässlichen" Xenonlicht fotografieren?!


Sehr oft bringt eine längere Verschlusszeit schönere, stimmungsvollere Bilder.
Bei der Verwendung kurzer Belichtungszeiten in Kombination mit einem Blitzlicht wird meist nur das Vordere Hauptmotiv auf dem Foto optimal belichtet dargestellt. Alles, was seitlich davon oder hinter der Blitzreichweite liegt, verschwindet im Dunkeln. In großen Innenräumen (z.B. Kirchen, Weinkellern oder Grotten) kann die Umgebung ins Bild eingebunden werden, wenn der Fotograf länger belichtet und so das Umgebungslicht mit nutzt. Dadurch bleibt im Foto die Tiefe des Raumes erhalten. In einer relativ dunklen Umgebung kann eine Belichtungszeit von bis zu einer halben Sekunde sinnvoll sein. Menschen, die im Bild sind, können durchaus so lange still halten, wenn sie vorgewarnt werden. Die Kamera sollte jedoch auf einem Stativ befestigt werden, um Verwacklungen zu verhindern.

Heimelige Atmosphäre im Kerzenschein lässt sich genauso im Bild schaffen. In kleinerer Umgebung, an einem Tisch beispielsweise, kann eine Verschlusszeit von 1/10 Sekunde oder 1/8 Sekunde bereits ausreichend sein - dies kann durchaus noch aus der Hand fhotographiert werden (bei entsprechend kurzer Brennweite - man beachte die Reziprokale Faustregel Verwacklungsfreie Belichtungszeit=1/Brennweite. Zwar werden Personen eventuell leicht verwischt abgebildet, dies kann man durch den Einsatz des Blitzlichts aber etwas kompensieren, da zunächst ja ein scharfes, geblitztes Hauptbild entsteht, um das sich möglicherweise ein leichter Saum legt. Wenn die Szenerie mit Kerzen oder anderem weichen Licht beleuchtet ist, erscheint der Unschärfe-Saum rötlich und verleiht dem Fhoto zusätzliche Wärme.
Beitrag Forum: Fotowiki   Geschrieben: Fr, 11. Jan 2008 23:18   Titel: Nikon

Nikon


Wechseln zu: Suche

Das Unternehmen Nikon Corporation, gelistet im Nikkei 225, ist ein japanischer Hersteller von Fotoapparaten, Objektiven und anderen optischen Präzisionsgeräten wie Mikroskopen und Ferngläsern. Seit 1925 baut Nikon Objektive und mehr als 35 Millionen wurden seitdem weltweit verkauft; seit 1917 sammelt man bei Nikon Erfahrungen im Bau optischen Glases. Im Jahr 2002 hatte das Unternehmen etwa 14.000 Angestellte. Hauptsitz ist Tokio.

Auf dem europäischen Markt ist Nikon seit etwa 1961 aktiv vertreten, als die Nikon AG Switzerland in Zürich gegründet wurde. Zu den wichtigsten Konkurrenten von Nikon gehören Canon, Sony (Minolta), Leica, Fujifilm, Kodak und Olympus; das Unternehmen zählt – neben Canon, Kodak und Sony (Minolta) – zu den vier weltweit bedeutendsten Unternehmen für Fototechnik.

Die Unternehmensgeschichte geht zurück bis auf das Jahr 1917, in dem sich die drei Firmen Tokyo Keiki Seisaku Sho, Iwaki Glass Manufacturing und Fujii Lens Seizo Sho am 25. Juli zur Nippon Kogaku Kogyo Kabushiki Kaisha (kurz: Nippon Kogaku K. K.; etwa „Japanische Optische Technik AG“) zusammenschlossen. Die Fusion wurde von dem Konzern Mitsubishi unterstützt, zu dem Nikon auch heute noch gehört. Erst 1988 benannte sich das Unternehmen um von Nippon Kogaku K. K. in K.K. Nikon (englisch Nikon Corporation).

Produkte


Fotografie

Zu den bekanntesten Produkten von Nikon gehören Kleinbild- und Digitalkameras, Nikkor-Objektive sowie die Nikonos-Unterwasserkameras.

1932 stellte das Unternehmen das erste Kameraobjektiv unter der Bezeichnung Nikkor vor; diese Produktbezeichnung wurde bis heute beibehalten.
Bild:Nikon f.jpg
Nikons erste Spiegelreflexkamera, die Nikon F mit austauschbarem Prismensucher (1959)

1946 entstand aus dem Firmennamen Nippon Kogaku K. K. der Produktname Nikon.

Die erste Kamera mit dem Namen „Nikon“ war die am 7. März 1948 vorgestellte Messsucherkamera Nikon I, die der Contax II aus Deutschland nachempfunden war und auch deren Bajonettanschluss hatte, jedoch mit Abweichungen in der Steuerkurve, welche bei längeren Brennweiten zum Tragen kommen, und dem ungewöhnlichen Bildformat 24 x 32 mm. Seinen internationalen Ruf begründete Nikon mit dem weitgehend baugleichen Nachfolgemodell Nikon M, das von 1949 bis 1950 angeboten wurde.

Der eigentliche Durchbruch gelang dann mit der auch offiziell für den Export produzierten Nikon S (1950-1955). Die Nikon S2 (ab Ende 1954) hatte als erste Nikon das heute übliche Filmformat 24 x 36 mm. Die von 1957 bis 1965 gefertigte Nikon SP wies eine professionelle Ausstattung auf (Anschluss für einen Filmtransportmotor, Einspiegelung von vier verschiedenen Brennweiten). Bei der vereinfachten Version, der von 1958 bis 1961 gebauten Nikon S3, musste man auf die umschaltbaren Rahmen im Sucher verzichten. 1959 folgte noch die weiter vereinfachte S3M. Mit der Einstellung der Produktion des Profi-Modells SP im Jahre 1965 wurde die Herstellung der Nikon-Messsucherkameras beendet.

Wesentlich zum Erfolg der Messsucherkameras trugen deren innovative Objektive bei. Sie fanden vielfach auch an den Contax-Kameras Verwendung und wurden auch mit Schraubanschlüssen für die Leica-Kameras hergestellt.

1959 wurde Nikons erste Kleinbild-Spiegelreflexkamera (SLR-Kamera), die Nikon F, vorgestellt; die Wechselobjektive wurden mit F-Bajonett ausgestattet, das nach dem Nikon-Chefingenieur Fuketa benannt wurde, der ab 1958 die Entwicklung der F-Serie leitete. Eine erste Modifikation dieses Objektivbajonetts erfolgte 1977 mit der Einführung der AI-Kupplung, eine zweite 1982 mit der Einführung des AI-S-Typs. An die erste Nikon F können grundsätzlich alle danach gebauten Nikon-Objektive (und Fremdobjektive mit F-Bajonett) angeschlossen werden und umgekehrt (ältere Nikon-Objektive an neueren Kameras), es müssen jedoch Funktionseinschränkungen in Kauf genommen werden.
Bild:Nikon F2.jpg
Die Nikon F2

Auf die Nikon F folgt nach 11 Jahren Bauzeit 1971 die technisch sehr ähnliche Nachfolgerin Nikon F2; Man spricht jetzt von der Nikon-F-Serie. Ab 1980 macht dann der moderne Klassiker Nikon F3 Furore. Erstmals ist der Belichtungsmesser fix eingebaut, der Verschluss wird nun elektronisch gesteuert, überdies wird eine Zeitautomatik angeboten. Obwohl viele Profis der Elektronik zunächst skeptisch gegenüberstanden, konnte diese doch überzeugen, und auch die F3 machte sich einen Namen als angesehene Profikamera. Dieses Modell sieht man auch heute noch im Einsatz.

1983 stellte Nikon mit der Nikon FA die erste SLR-Kamera der Welt mit Mehrfeldmessung (Vorläufer der heutigen Matrixmessung) vor. Im gleichen Jahr wurde Nikons erste Autofokus-Spiegelreflexkamera vorgestellt, die F3AF. Sie verwendete spezielle Objektive mit eingebautem AF-Motor, wurde jedoch nicht in großen Stückzahlen verkauft.

Als Minolta 1985 die 7000 AF und die 9000 AF auf den Markt brachte, war der AF-Motor unsichtbar in das Gehäuse gewandert. Nikons erste AF-SLR-Kamera mit der neuen AF-Technik wurde in der F-501 verwirklicht. Nikon entschied sich (anders als etwa Canon) für ein System, bei dem auch die manuellen Objektive weiterverwendet werden konnten. Das ursprüngliche Bajonett wurde beibehalten. In der professionellen F-Serie fand die AF-Technik dann 1988 in der Nikon F4 Anwendung, auf die dann 1996 die Nikon F5 folgte. 1999 kam die Nikon F100 auf den Markt – eine in einigen Funktionen abgespeckte F5, auf der auch Nikons erste digitale Profi-SLR-Kamera D1 basiert, welche weiterhin das F-Bajonett verwendet. Bereits voher gab es ab 1994 in der E-Serie digitale Spiegelreflexkameras in Kooperation mit Fuji, deren Konzept nach Erscheinen der D-Serie nicht mehr weiterverfolgt wurde. Das Jahr 1999 ist auch ein Jubiläum für den Nikon-Kamerabau: fünfzig Jahre zuvor (1949) stellte Nikon die erste Kleinbild-Kamera und vierzig Jahre zuvor (1959) die erste Kleinbild-SLR-Kamera vor. Anfang 2004 begann mit der Einführung der digitalen Spiegelreflexkamera Nikon D70 auch bei Nikon die Ära der Digitalspiegelreflexkameras mit einem Preis unter 1000 Euro.

Während im Oktober 2004 Nikon neben der digitalen Profikamera Nikon D2X mit 12,4 Megapixeln Auflösung, noch ihr analoges SLR-Flaggschiff Nikon F6 vorstellt, gibt das Unternehmen im Januar 2006 bekannt, das analoge Fotoprogramm weitgehend einzustellen. Damit konzentriert sich Nikon nun voll auf den digitalen Fotomarkt.

Nikon Coolpix ist eine Marketingbezeichnung für eine Modellreihe von digitalen Kompaktkameras der Firma Nikon, die seit 1997 hergestellt wird. Die interne Typenbezeichnung der Modellreihe ist „E-Serie“; so heißt beispielsweise die Nikon Coolpix 8800 eigentlich Nikon E-8800.

Digital Imaging


Nikon produziert seit 1988 professionelle Digitalkameras (Prototyp Nikon SVC 1986, Nikon QV-1000C 1988, ab 1994 Kooperation mit Fujifilm und Fertigung der Modellreihe Nikon Fujix, seit 1999 Kameras der D-Serie), ist jedoch erst seit etwa 1997 am Markt mit Consumer-Digitalkameras vertreten (Nikon Coolpix E-100, Nikon Coolpix E-300).

Neben Aktivitäten im Marktsegment der Digitalkameras produziert Nikon Film- und Diascanner (Coolscan-Serie), jedoch keine Fotodrucker oder sonstige Peripheriegeräte für PCs.

Sonstige optische Geräte

Nikon bietet ein sehr umfangreiches Angebot an Ferngläsern, Laser-Entfernungsmessern, Beobachtungsfernrohren (Spektive) und Zielfernrohren an. Weitere wichtige Geschäftsfelder des Unternehmens sind die Fertigung von Mikroskopen für den wissenschaftlichen Bereich und die Produktion von komplexen optischen Systemen für die Qualitätssicherung, die Vermessungstechnik und die Herstellung von Halbleiterbauelementen. Nikon ist darüber hinaus auf einigen Märkten als Anbieter von Brillengläsern aktiv.
[bearbeiten] Stückzahlen

Bis zur Abkündigung der Analogkameras hatte Nikon einen erheblichen Anteil am Gesamtmarkt, der sich inzwischen zu den Digitalkameras hin verschoben hat.

Spoiler: [ Anzeigen ]



Siehe auch

* Nikon-Messsucherkameras (Film)
* Nikon-Manuellfokus-Spiegelreflexkameras (Film)
* Nikon-F-Serie Autofokus-Spiegelreflexkameras (Film)
* Nikon-D-Serie Digitale Spiegelreflexkameras



Quelle



Teile des Artikels inklusive Bilder entstammen dem Artikel Nikon der de.wikipedia.org. Dort findest Du Informationen über Autoren und Lizenzen.

Einzelnachweise
Literatur

* Peter Braczko: Das neue große Nikon Handbuch. Kameras, Objektive, Zubehör. 368 Seiten. Hück: Wittig Fachbuch 1999, ISBN 3889841112
* Peter Braczko: Nikon Faszination. 412 Seiten – Wittig Fachbuchverlag 1992, ISBN 3889840477
* Rudolf Hillebrand und Hans-Joachim Hauschild: Nikon Kompendium. Das Handbuch der Nikon-Fototechnik. 208 Seiten. Gilch Verlag Photographie 1991, ISBN 3933131332

Weblinks





Kategorien:
Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 15:22   Titel: Objektive

Ein Objektiv ist ein sammelndes optisches System, das eine reelle optische Abbildung eines Objektes erzeugt. Bestandteile eines Objektivs können sowohl Linsen als auch Spiegel sein, die je nach Einsatzzweck in unterschiedlichsten Gehäusen gefasst sind.

Das Objektiv ist die zentrale, die Abbildungseigenschaften und die Bildqualität bestimmende Komponente optischer Geräte, wie beispielsweise Kameras, Mikroskope, Ferngläser oder auch astronomische Teleskope.

Genau wie das Objekt ist das erzeugte Bild dreidimensional. Objekte, die sehr weit entfernt sind, also scheinbar im Unendlichen liegen (z.B. Sterne und andere Objekte am Himmel), werden in einer Ebene, der Bildebene, abgebildet.

Die Größe des Bildes hängt von der Brennweite der Linse ab. Je größer diese ist, desto größer ist auch das Bild. Um die Kamera für Linsen verschiedener Brennweite benutzen zu können, war sie mit einem Auszug (Balgen) versehen, der es gestattete, sie zu verlängern bzw. zu verkürzen; das Balgenprinzip wird auch heute noch in der Großbild- und Makrofotografie genutzt.


Man unterscheidet Objektive primär aufgrund ihrer Brennweite; dabei wird unterschieden zwischen

* Normalobjektiv
* Fernobjektiv
* Weitwinkelobjektiv und
* Fischaugenobjektiv.

Die oben genannten Kategorien gelten für Festbrennweiten-Objektive; sehr populär sind in der Amateurfotografie heutzutage mittlerweile Zoomobjektive, die die Veränderung der Brennweite erlauben und je nach Brennweiten-Bereichen auch mehrere der genannten Kategorien abdecken können. Zoomobjektive werden auch nach ihrem relativen Brennweitenbereich kategorisiert und sind umso schwerer und aufwendiger, je lichtstärker sie sind und ein je größeres Verhältnis zwischen längster und kürzester Brennweite sie abdecken.

Weitere wichtige Unterscheidungsmerkmale sind die Anfangsöffnung, oder anders ausgedrückt: wie lichtstark ein Objektiv ist, und der Bildwinkel, in dem ein Objektiv ein scharfes Bild entwirft.

Außerdem können Objektive nach verschiedenen konstruktiven Merkmalen unterschieden werden, z.B.

* Teleobjektiv
* Spiegellinsenobjektiv
* Makroobjektiv
* Tilt- und Shift-Objektiv
* Autofokus-Objektiv
* Infrarotobjektiv
* Objektive mit integrierter Bildstabilisierung
* Objektive mit elektrischer Übertragung von Blendenwert etc. an die Kamera. (Electric-Objektive)

Eine weitere Eigenschaft eines Objektivs ist die kleinste Distanz auf die es fokussieren kann, die Naheinstellgrenze. Sie bestimmt wie nah man an das Motiv "herangehen" kann. (Siehe "Makroobjektiv")


Grundkonstruktionen

* Achromat
* Aplanat
* Apochromat
* Biotar
* Frontar
* Hypergon
* Meniskus
* Pankratisches System (umgangssprachlich: "Zoomobjektiv")
* Petzval-Objektiv
* Periskop (Symmetrisches Doppelobjektiv)
* Planar bzw. Gauß-Typ (auch: Doppel-Gauß-Konstruktion)
* Sonnar
* Telezentrisches Objektiv (Messtechnik)
* Tessar
* Triplet



Verwendung

Ein Projektor benutzt ein Objektiv, um ein stehendes oder bewegtes Bild vergrößert auf eine Wand zu projizieren.

In einem Mikroskop oder einem Teleskop betrachtet man das durch das Objektiv erzeugte Bild sehr kleiner oder weit entfernter Objekte durch ein Okular, ein weiteres Linsensystem. Beim Mikroskop liegt dabei die Bildebene näher beim Objektiv, und das Objektiv hat verglichen mit dem Okular eine kurze Brennweite. Beim Teleskop liegt die Bildebene näher am Okular, und das Objektiv hat die größere Brennweite.

In der Fotografie oder Videotechnik ist das Objektiv Teil eines Fotoapparates beziehungsweise einer Videokamera. Es erzeugt ein reelles Bild in der Bildebene, wo sich der lichtempfindliche Film oder ein elektronischer Sensor befindet. Man unterscheidet anhand der Brennweite zwischen Weitwinkelobjektiven, Normalobjektiven und Fernobjektiven (zumeist:Teleobjektiven). Lässt sich die Brennweite des Objektivs ändern, spricht man von einem Zoomobjektiv, sonst von einer Festbrennweite. Spezialobjektive sind das Fischauge (Fisheye) und TS-Objektive.

Geschichte und Entwicklung

Zu dem Fortschritt der Fotografie in der zweiten Hälfte des 19. Jahrhunderts haben die zahlreichen Vervollkommnungen der Objektive beigetragen. Früher benutzte man einfache achromatische Linsen, welche zur Erzielung scharfer Bilder stark "abgeblendet" werden mussten. Infolgedessen gaben sie sehr lichtschwache Bilder, die eine lange Expositionszeit nötig machten.

Ein großer Fortschritt war die Erfindung des Porträtobjektivs von Josef Petzval, einem lichtstarken Objektiv, das aus zwei Doppellinsensystemen besteht, bedeutend hellere Bilder lieferte als vorherige und damit die Aufnahme von Porträten in kurzer Expositionszeit ermöglichte. Zur Aufnahme von Landschaften, Architekturen etc. ist weniger Lichtstärke, aber ein großer Gesichtswinkel notwendig.

Die gewöhnlichen Landschaftsobjekte umfassen nur einen Winkel von 30° bis 45°, der meist zu klein ist. Man benutzte dazu früher ausschließlich einfache Linsen, später aber die Tripletobjektive, etwa ab den 1860er Jahren dann die von Steinheil eingeführten Aplanate. Das Tripletobjektive ist ein Objektiv, das insgesamt drei Linsen besitzt. Zu diesem System gehören auch die Euriskope, das Rapid Rectilinear u.a.

Diese geben bei einem Gesichtsfeld von ca. 60° eine hinreichende Lichtstärke, um in heiterem Sommerwetter selbst Momentaufnahmen zu gestatten. Ist ein noch größeres Gesichtsfeld als 60° nötig, so nimmt man Weitwinkellinsen, wie Buschs Pantoskop, Dallmeyers Wide angle lens, Steinheils Weitwinkelaplanat, Voigtländers Weitwinkeleuriskop, die ein Gesichtsfeld von 75 bis 100° besitzen.

Im Jahre 1860 konstruierte Thomas Sutton eine symmetrische Tripletlinse; das Objektiv bestand dabei aus zwei Konvexlinsen, deren vordere um etwa ein Drittel kleiner war als die Hinterlinse, sowie einer weiteren Einzellinse als konkaver Meniskus.

Steinheils Periskopobjektiv von 1865 ist ein verzeichnungsarmes Objektiv mit großem Bildwinkel, das erste Weitwinkelobjektiv im heutigen Verständnis.

Ludwig Seidel untersuchte in München die Abbildungsfehler der Linsen und veröffentlichte 1866 ein Formelsystem, das die Objektivkonstruktion erleichterte.

Hugo Adolf Steinheil konstruierte 1881 das erste Universalobjektiv.

Ernst Abbe und Otto Schott begannen ab 1880 mit der Entwicklung neuer Glassorten. Sie gründeten 1882 zusammen mit Carl Zeiss eine Glasschmelzerei in Jena. Mit Hilfe der neuen Gläser gelang es nach 1886 dem Mitarbeiter Paul Rudolph, ein Doppelobjektiv zu konstruieren, bei dem der Fehler des Astigmatismus erstmals korrigiert war: das Planar-Objektiv.

Der Astigmatismus kann auch durch Verwendung asphärischer Linsen korrigiert werden, die aber in der Herstellung viel komplizierter sind als sphärische Linsen.



siehe auch:
Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 15:20   Titel: Langzeitbelichtung

Von Langzeitbelichtung wird ab einer Belichtungszeit von mehreren Sekunden gesprochen. Langzeitbelichtungen werden eingesetzt um auch bei geringem Licht noch fotografieren zu können oder um Bewegungsabläufe aufzuzeigen, im technischen und künstlerischen Bereich.

In der Available Light Fotografie werden Langzeitbelichtungen durch hochempfindliche Filme/Bildsensoren und Lichtstarke Objektive weitestgehend vermieden, da hier normalerweise kein Stativ verwendet wird. In der Nachtfotografie werden Langzeitbelichtungen häufig eingesetzt, das Anwendungsgebiet ist jedoch universeller.


Bildwirkung

Langzeitbelichtungen zeigen einen Ausschnitt der Zeit, wie wir ihn normalerweise nicht wahrnehmen können. Im Gegensatz zu “normalen” Fotografien halten sie nicht einen kurzen Augenblick fest, sie bilden das Motiv in einem längeren Prozess ab. Bewegungen werden dabei verwischt, sie zerfließen in der Zeit.

Die ca. zweijährigen Belichtungszeiten vom Potsdamer Platz durch Michael Wesely zeigen einen Horizont durch die neuen Gebäude hindurch, der schon vor der Bebauung des Platzes zu sehen war. Auch die Sonnenbahnen treten als helle Streifen sehr stark in den Vordergrund.

Durch die lange Belichtungszeit ergibt sich bei bewegten Objekten eine große Bewegungsunschärfe, die als gestalterisches Mittel genutzt werden kann. Bewegte Objekte oder Personen verschwimmen und können sogar völlig "verschwinden", was bei z. B. Architekturaufnahmen genutzt wird. Im Dunklen hinterlassen helle Objekte (z. B. Scheinwerfer von Fahrzeugen) Lichtstreifen. Langzeitaufnahmen eines Nachthimmels (ohne Beeinflussung störender Lichtquellen wie Straßenbeleuchtungen etc.) lassen die Sterne durch die Erddrehung wie Striche aussehen.


Durchführung

Die meisten Langzeitbelichtungen spielen sich im Rahmen von 5 Sek. bis hin zu mehreren Minuten ab. Der Belichtungszeit ist nach oben kaum eine Grenze gesetzt. Michael Wesely hat extreme Langzeitbelichtungen von bis zu 26 Monaten durchgeführt.

Eine korrekte Belichtung bei langen Zeiten kann durch verschiedene Mittel erreicht werden:

* Abblenden, z. B. auf Blende 16 bis 32 (je nach Objektiv)
* Verwendung eines Films mit geringer Lichtempfindlichkeit, z. B. ASA 50
* Graufilter am Objektiv
* Verringerung des Umgebungslichtes.

Soll nur ein sich bewegendes Objekt, nicht aber der Hintergrund verwackelt und verschwommen wiedergegeben werden, so muss die Kamera gegen Verwackeln gesichert werden z. B. durch ein stabiles Stativ. Bei Verwendung eines Stativs sollten Bildstabilisierungs-Systeme abgeschaltet werden. Sie können sonst durch "Überreaktionen" wieder zu verwackelten Bildern führen.

Bei Kameras mit manueller Belichtungseinstellung oder Zeitvorwahl lassen sich lange Belichtungszeiten direkt einstellen. Auf den meisten Kameras ist die Funktion für die Langzeitbelichtung ab 30 Sekunden mit einem B gekennzeichnet, das für Bulb (engl. Blitzbirne) steht. Bei den meisten elektronisch gesteuerten Kameras wird die Belichtungszeit durch die Kapazität der Batterie begrenzt (offenhalten des Verschlusses). Bei einer Canon 3000N liegt beispielsweise das Maximum laut Hersteller bei etwa 6 Stunden. Einige wenige Modelle der oberen Preisklasse verriegeln den offenen Verschluss in dieser Zeit, so dass das Offenhalten keinen Strom mehr benötigt (Canon EOS 3). Kameras mit mechanischem Verschluss erlauben nahezu unbegrenzte Belichtungszeiten.

In den Anfängen der Fotografie war die Langzeitbelichtung kein reines Gestaltungsmittel, sondern eine Notwendigkeit. Gründe dafür waren die geringe Empfindlichkeit des Fotomaterials und geringe Lichtstärke der Objektive.


Besonderheiten

Zu beachten ist, dass bei chemischem Filmmaterial durch den Schwarzschildeffekt längere Belichtungszeiten notwendig sind, als der Belichtungsmesser angibt. Diese Abweichung ist abhängig vom Filmmaterial.

Bei digitalen Kameras entfällt diese Korrektur, dafür entsteht ein höheres Rauschen des Bildsensors, das zum Teil durch bestimmte "Entrauschungsverfahren" ausgeglichen werden kann. Bei modernen Digitalkameras wird im Anschluss an die Langzeitbelichtung ein Bild bei geschlossenem Verschluss als "Rauschmuster" aufgenommen. Dieses Muster wird benutzt, um das Rauschen des aufgenommenen Bildes zu reduzieren.

Eine weitere sehr effektive Methode, welche jedoch nicht angewendet werden kann, wenn sich im Bild Bewegungsmuster befinden, ist die Methode der zweiten Aufnahme. Hierbei wird das Bild mit absolut identischen Einstellungen mehrfach aufgenommen. Da sich Störungen bezüglich Bildrauschen zufällig verhalten, können diese über diese Bilder herausgerechnet werden.

Siehe auch


Chronofotografie, Belichtungszeit, Kurzzeitfotografie, Available Light, Nachtfotografie
Wikipedia

Kategorien

Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 15:10   Titel: Belichtungsmessung

Grundlagen der Belichtungsmessung


Belichtungsmessungen kann man prizipiell in die beiden Arten Objektmessung und Lichtmessung unterteilen. Beide Arten sollen hier mit Beispielen und ihren Vor- und Nachteilen vorgestellt werden.

1. Objektmessung

Bei der Objektmessung wird aus der Aufnahmeposition in die Richtung des Objektes (des Motivs) gemessen. Somit wird die Lichtreflektion der anvisierten Objekte erfasst. Dies kann mit einem separaten Belichtungsmesser geschehen oder mittels den in Kameras eingebauten Messsystemen. In Amateurkreisen, besonders in den Anfangszeiten, ist die Objektmessung mittels Kamera wohl die häufigste Messmethode. In Verbindung mit den Belichtungsautomatiken (Programmen) vieler Kameras ist diese Messung einfach und sehr schnell. Sie läuft automatisch, mehr oder weniger unbemerkt, leider oft auch unbeachtet beim Andrücken des Auslösers in Sekundenbruchteilen von selbst ab und stellt die Kamera entsprechend ein. Mit schöner Regelmäßigkeit treten dann auch die Nachteile dieser einfachen Methode zu Tage: Fotos sind oftmals unter- oder überbelichtet. Hat die Kamera versagt oder woran mag das liegen?

Dazu zwei Beispiele mit Situationen, wo die Belichtungsautomatik einer Kamera nicht richtig messen kann:

1.1 Gefahr der Überbelichtung bei dunklem Hintergrund




Hat ein Motiv in seiner Gesamtheit viele dunkle Anteile, zum Beispiel dunkle Wände, dichten Waldrand oder eine dunkle Hintergrundfolie wie in nebenstehender Grafik gezeigt, so wird davon sehr viel Licht geschluckt. Es wird wenig Licht reflektiert. Ein Belichtungsmesser zeigt wenig Licht an. Die Kameraautomatik registriert dies ebenfalls und möchte nun durch Verlängerung der Belichtungszeit oder durch weiteres Öffnen der Blende (je nach Automatikprogramm) genügend Licht auf den Film bringen. Die Automatik kann nicht erkennen, dass das Hauptobjekt, zum Beispiel eine Person im Vordergrund, viel heller ist als das Motiv insgesamt. Es kommt zur Überbelichtung des Hauptobjektes (der Person).

1.2 Gefahr der Unterbelichtung bei hellem Hintergrund




Hat ein Motiv in seiner Gesamtheit viele helle Anteile, zum Beispiel eine Schneelandschaft, eine helle Hauswand oder eine weisse Hintergrundfolie, so wird davon sehr viel Licht reflektiert. Ein Belichtungsmesser schlägt weit aus. Die Kameraautomatik registriert dies als große Helligkeit und will nun durch eine kurze Belichtungszeit oder durch weitgehendes Schließen der Blende (je nach Automatikprogramm) zuviel Licht für den Film vermeiden. Die Kameraautomatik kann nicht erkennen, daß das Hauptobjekt, zum Beispiel eine Person vor diesem Hintergrund, viel dunkler ist als das Motiv insgesamt. Es kommt zur Unterbelichtung des Hauptobjektes (der Person).

1.3 Objektmessung als Referenzmessung




Nun heißt es, die Automatik der Kamera abzuschalten und den Aufnahmepunkt zu verlassen. Gehen wir doch einfach näher an das Motiv heran und zeigen unserer Belichtungsmessung nur das, was von uns als maßgebliches Objekt, als Referenzobjekt angesehen wird. Hierzu bieten sich zum Beispiel Gesichter von Personen an oder Handflächen. Dieses Detail nehmen wir groß in den Sucher und stellen nun manuell die Blende und Zeit auf die richtige Belichtung ein. Ob eine lange Zeit mit geringer Blendenöffnung oder umgekehrt bevorzugt wird, muss von Fall zu Fall nach der Motivsituation beurteilt werden. Dann kehren wir zum Aufnahmestandpunkt zurück und machen von hier aus unsere Aufnahme mit der manuell eingestellten Zeit und Blende.

Eine Variante dazu ist die Verwendung der sogenannten Graukarte. Dies ist ein grauer Karton oder Kunststoffplatte mit einem mittleren Reflektionsgrad. In vielen Fällen ist eine optimale Kameraeinstellung auf diese Weise einfach möglich. Zu Thema "Graukarte" wird es einen separaten Tipp geben, der dann zum Lesen empfohlen sei.

Bei der Landschaftsfotografie und anderen Situationen, wo kein Hauptmotiv (wie Personen) vorhanden ist, kann man andere Referenz-Bildausschnitte des Motives anvisieren und nach gleichem Muster verfahren. Zusätzliche Aufnahmen mit leichter Unter- und Überbelichtung (z.B. 1/2 Blendenwert) sind besonders bei Dia-Filmmaterial empfohlen.

Einige Kameras verfügen über verschiedenste Einstellmöglichkeiten für die Belichtungsmessung. So können z.B. Spotmessungen möglich sein, mit der das Hauptobjekt "allein" anvisiert werden kann oder Messungen mit vielen Messpunkten im ganzen Sucherbereich verteilt. Die Entwicklung neuer Kamera-Messysteme geht in dieser Beziehung sehr weit und sind unterschiedlich. Daher kann hier an dieser Stelle nur auf die jeweiligen Kamerabeschreibungen verwiesen werden.

2. Lichtmessung


Diese Art der Belichtungsmessung ist separaten Belichtungsmessern vorbehalten. Bei der Lichtmessung wird nicht ermittelt wieviel Licht ein Objekt (Motiv) reflektiert, sondern wieviel Licht dort ankommt. Die Messrichtung ist vom Objekt weg (zur Kamera, Aufnahmeposition) gewandt.

2.1 Lichtmessung bei Tages- und Dauerlicht



Der Belichtungsmesser wird für diese Messmethode mit einer Streulichtscheibe (Diffusorkalotte) versehen. Dadurch werden Einflüsse durch punktuelle Helligkeitsunterschiede auf das Messergebnis vermieden. Die weiss-matte Streulichtscheibe bildet quasi die Referenzfläche für den lichtempfindlichen Sensor im Inneren des Belichtungsmessers. Vorteil dieser Licht-Messmethode ist, dass Einflüsse durch helle oder dunkle Objektbestandteile keinen Einfluss auf das Messergebnis haben. Nachteilig wirkt sich aus, dass außer der Kameara ein Belichtungsmesser benötigt wird und dass die Lichtverluste in der Kamera (im Objektiv) ungemessen bleiben und deswegen durch manuelle Korrekturen berücksichtigt werden müssen.

2.2 Lichtmessung beim Einsatz von Blitzanlagen




Eine weitere Licht-Messmethode wird bei der Verwendung von Studio-Blitzanlagen angewendet. Hierbei kommt ein spezieller Belichtungsmesser, der sogenannte Blitz-Belichtungsmesser zum Einsatz. Dieser Blitz-Belichtungsmesser ist in der Lage, den sehr kurzen Lichtimpuls einer Blitzanlage zu speichern und auszuwerten. Er zeigt, wie die anderen Belichtungsmesser auch, mögliche Zeit-Blendenkombinationen für die richtige Belichtung an.

Abschließend kann zu allen Messmethoden gesagt werden, dass immer die Erfahrung des Fotografen zur richtigen Interpretation und ggf. Korrektur der Messergebnisse erforderlich ist. Geräte und Messmethoden - und seien sie noch so gut - können Besonderheiten im Motiv, für die die Geräte nicht ausgelegt sind, nicht berücksichtigen.

Text & Grafiken (c) by Lothar Franz

siehe auch

Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 14:51   Titel: Weißabgleich

Der Weißabgleich (engl. white balance, WB) dient dazu, die Kamera auf die Farbtemperatur des Lichtes am Aufnahmeort zu sensibilisieren. Die digitale Aufzeichnung von Bildern (Foto und Film) sowie die Videotechnik erlaubt – wie auch die analoge Technik – eine den Lichtverhältnissen angepasste Farbtemperatur.

Auch das menschliche Auge verfügt über diese Fähigkeit der chromatischen Adaption.



Ein Bild, im Rohdatenformat von Canon fotografiert und später auf vier verschiedene Arten den Weißabgleich gesetzt.








Im ersten Bild ist eine unter Kunstlicht aufgenomme Milchtüte mit verfälschten Farben zu sehen. Im zweiten Bild wurde in gleicher Lichtsituation vor die Milchtüte eine Graukarte zum manuellen Weißabgleich positioniert. Nachdem die Kamera entsprechend kalibriert wurde ist im dritten Bild eine korrekte Farbgebung zu erkennen




Vollautomatischer Abgleich



Beim vollautomatischen Abgleich (engl. automatic white balance, AWB) sucht die Kamera nach einer für sie weiß erscheinenden Fläche. Das kann funktionieren, wenn wirklich nahezu Weiß in ihrem Blickfeld ist. In Wirklichkeit ermittelt sie jedoch nur die hellste Stelle des Bildes, die naturgemäß im Original nicht unbedingt weiß gewesen sein muss. Die Folge davon sind Farbstiche, die nicht immer als künstlerische Verfremdung akzeptiert werden können. Der vollautomatische Weißabgleich versagt zum Beispiel häufig bei Aufnahmen im Dämmerlicht.

Halbautomatischer Abgleich


Hier wird eine Grundumgebung vorgegeben. Die Bestimmung von Weiß ist in diesem Fall nicht mehr gegeben, da die Kamera auf die vorhandene Beleuchtungsart voreingerichtet ist.

Beispielhafte Einstellmöglichkeiten:

* Tageslicht
* Kunstlicht
* Kunstlicht von Leuchtstoffröhren

Ein automatischer Weißabgleich kann bei einheitlichen Lichtsituationen akzeptable Resultate erzielen, bei Mischlicht (z. B. Tageslicht und Kunstlicht im Motiv) ist die Fehlerquote jedoch recht hoch.

Manueller Abgleich


Im ersten Bild ist eine unter Kunstlicht aufgenomme Milchtüte mit verfälschten Farben zu sehen. Im zweiten Bild wurde in gleicher Lichtsituation vor die Milchtüte eine Graukarte zum manuellen Weißabgleich positioniert. Nachdem die Kamera entsprechend kalibriert wurde ist im dritten Bild eine korrekte Farbgebung zu erkennen
Im ersten Bild ist eine unter Kunstlicht aufgenomme Milchtüte mit verfälschten Farben zu sehen. Im zweiten Bild wurde in gleicher Lichtsituation vor die Milchtüte eine Graukarte zum manuellen Weißabgleich positioniert. Nachdem die Kamera entsprechend kalibriert wurde ist im dritten Bild eine korrekte Farbgebung zu erkennen

Zum manuellen Weißabgleich hält man die Kamera formatfüllend auf eine möglichst weiße oder neutral graue Fläche in der zu filmenden oder fotografierenden Umgebung. Ein weißes DIN-A4-Blatt tut in den meisten Fällen diesen Dienst, wobei sinnvollerweise die Belichtung so weit zurückgenommen wird, dass keiner der Farbkanäle übersteuert. Da jedoch viele Papiere optische Aufheller enthalten, können sie der Kamera zu blau erscheinen, was nach dem Weißabgleich dann einen Gelbstich der Bilder zur Folge hat, daher ist eine so genannte Graukarte ideal. Nach Betätigung der entsprechenden Funktion kann der Kameraprozessor die richtige Farbtemperatur ermitteln.

Weißabgleichsreihen



Kameras im höheren Preissegment bieten die Funktion für Weißabgleichsreihen. Bei dieser Technik werden vom selben Motiv mehrere Aufnahmen mit verschiedenen Einstellungen für den Weißabgleich aufgenommen.

Softwarebasierter Weißabgleich


Moderne Software erlaubt sogar einen nachträglichen Weißabgleich mit recht guten Ergebnissen. Auch hierbei gibt es die beschriebenen Verfahren wie Vollautomatik, Halbautomatik und manuell. Beim manuellen Abgleichen per Software bestimmt man den Weißpunkt per Mausklick. Das kann bei komfortablen Programmen durch mehrere Punkte (Klicks) noch verfeinert werden, die dann einen Mittelwert ergeben.

Ein nachträglich durchgeführter Weißabgleich findet komplett verlustfrei statt, wenn die Bilder im kameraeigenen Rohdatenformat abgespeichert wurden. Das bedeutet, dass man die Wahl des Weißabgleiches für die Aufnahme des einzelnen Bildes nicht notwendiger Weise vor Ort vornehmen muss und den größtmöglichen Spielraum bei der Nachbearbeitung hat. Die zusätzliche Aufnahme einer Weißabgleichkarte oder Graukarte kann sich bei dieser Nachbearbeitung jedoch als nützlich herausstellen, da sich der notwendige Weißpunkt nicht in jedem Motiv finden lässt. Im Unterschied zum Rohdatenformat führt die Korrektur des Weißabgleichs einer Aufnahme, die im datenreduzierenden JPEG-Kompressionsformat gespeichert wurde, zu mitunter deutlichem Qualitätsverlust.

Weißabgleichkarte



Eine neutrale Weißabgleichkarte kann dabei als Referenz ähnlich einer Graukarte verwendet werden. Bei Verwendung einer Weißabgleichkarte gibt es keine Fehler wie bei den im nachfolgenden beschriebenen Ersatzlösungen, für Fälle, in denen keine genormte Referenz zur Hand ist.

In diesem wie in allen anderen Fällen des Weißabgleichs ist aber zu beachten, dass auch nach Durchführung des Abgleichs noch Unterschiede zwischen diversen Lichtquellen verbleiben: ein Weißabgleich bei bläulichem Licht führt beispielsweise dazu, dass bei den anschließenden Fotos dem gesamten Bild die Farbe blau entzogen wird, somit auch solchen Gegenständen, die eigentlich blau sein sollen. Dieser Effekt kann durch Verwendung einer Tageslichtlampe als Lichtquelle minimiert werden.

Siehe auch


* Belichtungsmessung
* Lichtplanung
* Chromatische Adaption

Weblinks


Wiktionary: Weißabgleich – Bedeutungserklärungen, Wortherkunft, Synonyme und Übersetzungen

* nachträglicher Weißabgleich mit Gimp (Gimps.de)
* http://www.digitalkamera.de/Tip/11/72.htm - Fototipp: Weißabgleich – braucht man den? (Digitalkamera.de)
* http://www.photographie.de/workshops/digitipp_04_03.cfm - Online-Workshops: Weißabgleich - (Photographie Online)
* Ausführliche Seite über das Thema Farbtemperatur und Weißabgleich

Quelle

Teile Dieses Artikels inklusive der Bilder entstammen dem Artikel Weißabgleich der der deutschsprachigen Wikipedia. Dort findest Du Informationen über die Autoren und Lizensen der Texte und Bilder.


Kategorien


Beitrag Forum: Fotowiki   Geschrieben: So, 30. Dec 2007 14:42   Titel: Offenblendmessung

Offenblendmessung

Mit Offenblendmessung ausgestattete Spiegelreflexkameras (SLR, single lens reflex) messen die Belichtung bei offener Blende, d.h. der größtmöglichen Öffnung des Objektivs.

Funktion


Der Wert der für die Aufnahme eingestellten Blende am Objektiv (also der während der Aufnahme verringerte Lichteinfall) wird entweder mechanisch oder elektronisch der Kameraelektronik relativ zur größten Blendenöffnung übermittelt und von dieser vorweggerechnet bzw. simuliert (Blendensimulation). Die Belichtungsmessung bestimmt dann auf dieser Grundlage die erforderliche Belichtungszeit und zeigt sie als Vorgabe im Sucher an (für die manuelle Zeiteinstellung) oder gibt sie dem Verschluss automatisch vor (Zeitautomatik), oft mit einer Anzeige verbunden, die vor zu langen, verwacklungsgefährdeten Zeiten warnt.

Im Moment der Auslösung wird der Schwingspiegel hochgeklappt, die Springblende auf den voreingestellten Wert geschlossen und anschließend der Schlitzverschluss zur Aufnahme geöffnet.

Eigenschaften


Die Offenblendmessung hat den Vorteil, dass das Sucherbild bei der Belichtungsmessung durch das Objektiv (s. TTL) stets so hell wie möglich bleibt. Dies erleichtert das Fokussieren sowohl direkt auf der Einstellscheibe als auch bei der Verwendung von Fokussierhilfen wie Schnittbildindikatoren und Mikroprismenring, die bei kleineren Blendenzahlen als etwa 1:5,6 praktisch nicht mehr zu gebrauchen sind. Bei der Arbeitsblendenmessung mit sehr kleinen Blendenwerten wie 16 oder 22 ist dagegen meist so gut wie nichts im Sucher zu erkennen. Nebenbei wird ein Nachteil der früher häufig verwendeten CdS-Fotowiderstände weitgehend ausgeglichen, die bei geringer Helligkeit bisweilen extrem träge reagieren. Bei starker Abblendung des Objektivs können solche Zellen durchaus mehrere Sekunden benötigen, bis sie den endgültigen Messwert anzeigen.

Nachteil der Offenblendmessung ist, dass oftmals die Schärfentiefe einer Aufnahme nicht mehr beurteilt wird - sei es, weil insbesondere modernen Kameras oft eine Abblendtaste fehlt, oder sei es, weil sie von Automatik-verwöhnten Fotografen nicht genutzt wird.

Bei bestimmten, an einäugige SLR angesetzten Zubehörteilen ist eine Offenblendmessung nicht möglich, etwa beim Einsatz von T-2-Adaptern, oder bei Verlängerungseinrichtungen (Balgengeräten), falls eine Blendenwert-Übertragungsmechanik nicht einsetzbar ist, wie z.B. bei speziellen Mikro- und Makroobjektiven oder bei der Montage eines Objektivs in Retrostellung. Bei einigen neueren Kamerasystemen, die vollständig auf die elektrische Betätigung und Übertragung der Blendeneinstellungen setzen, ist aber auch in solchen Sonderfällen eine Offenblendmessung möglich.

Bei Spiegellinsenobjektiven wird mangels verstellbarer Blende stets bei voller Objektivöffnung gemessen.

Systeme


Die ersten Kleinbild-Spiegelreflexkamera mit Offenblendmessung brachte der japanische Hersteller Topcon 1964 auf den Markt. Die erste deutsche SLR mit TTL-Offenblendmessung war die Contaflex Super BC von Zeiss-Ikon/Voigtländer von 1965. Leitz bot sie mit der Leicaflex SL seit 1968. Viele aktuelle Kameras, erstmals jedoch die Minolta XD-Serie sowie die Olympus OM-2, legen die endgültige Belichtungszeit erst im Moment der Auslösung unmittelbar nach Schließen der Blende fest. Dadurch werden Toleranzen der Blendenmechanik abgefangen, im Falle der OM 2 ist es dadurch sogar möglich, Beleuchtungsänderungen bei Langzeitbelichtungen zu berücksichtigen.

Systembedingt spielt die Offenblendmessung bei Sucherkameras keine Rolle, obwohl auch diese die Belichtungsmessung oftmals durch das Objektiv vornehmen.


Siehe auch




Quelle

Teile dieses Artikels entstammen dem Artikel Offenblendmessung der de.wikipedia.org. Dort findest Du Angaben über Autoren und Urheberrecht der Artikel und Bilder.

Kategorien

Beitrag Forum: Fotowiki   Geschrieben: Sa, 29. Dec 2007 18:55   Titel: Digitalfotografie

Digitalfotografie

Wechseln zu: Suche

Als Digitalfotografie wird zusammenfassend die Fotografie mit Hilfe eines digitalen Fotoapparats oder die Arbeit mit digitalisierten Bildern sowie die sich daran anschließende Weiterverarbeitung mittels elektronischer Bildbearbeitung sowie digitaler Präsentation und Archivierung bezeichnet.

Die Digitalfotografie weicht in zahlreichen Aspekten von der klassischen optochemisch basierten Fotografie ab und ähnelt, insbesondere bei der Bildwandlung, einerseits der Videotechnik, andererseits den bildgebenden Verfahren.












Sony Mavica FD5



Bilderzeugung

Bildwandlung

In der Digitalfotografie gibt es – von Hybridverfahren wie der Kodak Photo CD abgesehen – keinen chemischen Film mehr; zur Wandlung der Lichtwellen in digitale Signale werden Halbleiter-Strahlungsdetektoren in CCD- oder CMOS-Technik als Bildsensoren verwendet. Bei dieser Digitalisierung eines analogen Bildes handelt es sich um eine Bildwandlung, bei der eine Diskretisierung (Zerlegung in Bildpunkte) und Quantisierung (Umwandlung der Farbinformation in einen digitalen Wert) des analogen Bildes durchgeführt wird.

Hybridverfahren

Eine Übergangslösung zwischen analoger und digitaler Fotografie stellt die Fotografie mit dem klassischen "Silberfilm" dar, bei der anschließend das Negativ oder Positiv zunächst mit einem Scanner digitalisiert wird und dann das gespeicherte Bild digital weiterbearbeitet wird.

Die manuellen Arbeitsschritte kann man sich sparen, wenn man vom industriellen Fotolabor eine Kodak Photo CD herstellen lässt; dabei wird der – noch ungeschnittene – Filmstreifen direkt im Anschluss an die Entwicklung mit professionellen Scannern in hoher Qualität digitalisiert und auf eine CD gebrannt. Als kostengünstigere Alternative sind etwa seit 1999 sogenannte Picture Discs von verschiedenen Anbietern auf dem Markt, auf denen die Aufnahmen mit geringerer Auflösung im verlustbehafteten JPG-Format gespeichert werden. Die Qualität der Picture Disks ist in der Regel jedoch nicht für eine Weiterverarbeitung ausreichend, sondern nur zur Vorbetrachtung geeignet.

Kamerainterne Bildverarbeitung


Jede Digitalkamera führt nach oder bereits während der Bildwandlung eine Reihe von Verarbeitungsprozessen wie Weißabgleich, Erhöhung der Farbsättigung, Anheben des Kontrasts, Tonwertkorrektur, Filterung, Schärfen, verlustbehaftete Komprimierung usw. durch; Consumer-Kameras schärfen auch dann noch nach, wenn man diese Funktion abgeschaltet hat (vgl. Andrea Trinkwalder, Raw-Masse. Höhere Farbtiefe, weniger Fehler: Bessere Bilder dank Rohdaten).

Um auf das vollkommen unbearbeitete Bild zuzugreifen empfehlen sich hochwertige Kameras, die ohne jeglich interne Kameraverarbeitung Schärfung, Datenreduktion etc. den kompletten Datensatz des Sensors als Kopie im RAW-Bild speichern.


Bildeigenschaften


Seitenverhältnis

Die meisten Digitalkameras speichern Bilder mit einem Seitenverhältnis von 1,33 (4:3). Dies hat historische Gründe: Die ersten Digitalkameras waren auf existierende Sensoren angewiesen und da 4:3 dem Seitenverhältnis der verbreiteten Computermonitore und Fernsehnormen NTSC, PAL und SECAM entspricht (was wiederum von den frühesten Kinofilmen herrührt), waren überwiegend Sensoren mit diesem Seitenverhältnis verfügbar. Inzwischen werden Sensoren mit dem Seitenverhältnis 3:2 speziell für Digitalkameras entwickelt und zumeist in digitalen Spiegelreflexkameras eingesetzt. Panasonic bietet Kameras an, die mit Bildwandlern im Format 16:9 ausgerüstet sind, und durch Weglassung von Bildspalten in der Lage sind, zusätzlich auch die Bildformate 3:2 und 4:3 zu unterstützen.

In der Ausbelichtung hat ein Seitenverhältnis von 4:3 die Konsequenz, dass das Bild bei Verwendung der herkömmlichen 3:2-Papierformate (z.B. 10x15 cm) entweder oben und unten beschnitten wird oder links und rechts weiße Streifen auftreten. Daher werden heutzutage meist Papierformate mit den Seitenverhältnissen 4:3 verwendet. Hierbei wird dann zum Beispiel oft von einem 10er-Format gesprochen, um anzuzeigen welche Höhe der Abzug aufweist; die Breite des Abzugs ergibt sich dann entsprechend dem Seitenverhältnis. Diese Papierformate weichen zwar von den klassischen Papierformaten (Abzügen) ab, der Abzug zeigt jedoch unbeschnitten das komplette Bild. Ein Abzug im 10er-Format mit den Seitenverhältnissen 4:3, ist 10x13,33 cm groß und passt mit den oben beschriebenen Einschränkungen nur bedingt in die üblichen Bilderrahmen.

Pixelanzahl und Auflösung

Als Bildauflösung bezeichnet man die Anzahl der Bildpunkte, Pixel genannt, in Breite und Höhe eines digitalen Bildes; bei 1600 x 1200 Pixeln ergibt sich also beispielsweise eine Auflösung von 1,92 Megapixeln.

Die Herstellerangaben zur Pixelanzahl müssen kritisch interpretiert werden, da sie nicht die tatsächlich vorhandene Anzahl an Farbpixeln wiedergeben. Bei dem weit verbreiteten Bayer-Sensor ist dies die Anzahl der einfarbigen Pixel, für den Foveon-X3-Sensor die Anzahl der lichtempfindlichen Elemente multipliziert um den Faktor drei.

Daher ist es nicht möglich, die Pixelanzahl der verschiedenen Sensortypen direkt miteinander zu vergleichen; nach Schätzungen liefert ein Bayer-Sensor mit sechs Megapixeln etwa dieselbe Auflösung wie ein Foveon-X3-Sensor mit 10 Megapixeln. Einen weiteren proprietären Sensor verwendet Fujifilm, siehe Super-CCD-Sensor.

Die Auflösung digitaler Bilder ist nur eingeschränkt mit der Auflösung eines Filmnegativs oder Prints zu vergleichen, da sie u. a. vom Betrachtungsabstand und der Art der Darstellung (Bildschirm, Print) abhängig ist.

Auf normales Fotopapier ausbelichtete Digitalfotos erreichen die Qualität von konventionellen Papierabzügen – hier entscheidet vielmehr die verwendete Kamera, das Objektiv sowie eine Reihe weiterer Faktoren über die technische Bildqualität.

Die Pixelanzahl gibt auch nur näherungsweise die Auflösung feiner Strukturen wieder. Bei der Digitalisierung gilt das Nyquist-Shannon-Abtasttheorem. Danach darf die maximale im Bild auftretende Frequenz maximal halb so groß sein, wie die Abtastfrequenz, weil es sonst zu unerwünschten Bildverfälschungen, zum Beispiel zu Moiréerscheinungen, kommt und das Originalsignal nicht wieder hergestellt werden kann.

Eine weitere Einschränkung der Vergleichbarkeit konventioneller und digitaler Aufnahmen ergibt sich aus der Tatsache, dass es sich beim Filmkorn - technisch betrachtet - um ein stochastisches, also ein völlig zufälliges und unregelmäßiges Rauschen handelt, das bei technisch gleicher Auflösung meist weitaus weniger störend wirkt als das strikt regelmäßige Pixelmuster digitaler Aufnahmen. Dieses Pixelmuster hingegen kann durch geeignete Software nach Kalibrierung auf den jeweiligen Sensor perfekt entfernt werden, was bei chemischem Film wiederum erneut nicht möglich ist. Visuell wirken somit "analoge" Bilder mit sichtbarem Korn - bei gleichem Informationsgehalt - entweder erträglicher oder gestört.

In der Praxis bedeutet das, dass man vor der Digitalisierung die maximale Frequenz kennen oder herausfinden muss und dann das Signal zwecks Digitalisierung mit mehr als der doppelten Frequenz abgetastet werden muss. Bei der Digitalfotografie kann man, um die Moireerscheinungen von vornherein zu vermeiden, die Optik leicht unscharf stellen. Das entspricht einem Tiefpass. Wenn die Pixelzahl des Sensors erhöht wird, muss die Optik neu angepasst werden, weil sonst die erhöhte Pixelzahl nicht ausgenutzt werden kann.

Beim Scannen gerasterter Bilder muss man die Auflösung ebenfalls so groß wählen, dass die feinsten Strukturen des Rasters dargestellt werden können. Anschließend kann man entrastern (dazu gibt es unterschiedliche Funktionen) und dann die Auflösung herabsetzen.

Spoiler: [ Anzeigen ]


Dateiformat


Bei der Digitalfotografie entstehen in jedem Fall Daten, die in der Regel elektromagnetisch oder optisch gespeichert werden; dies geschieht meist in einem standardisierten Grafikformat. Aktuelle Digitalkameras verwenden JPEG, einige besser ausgestattete auch das Rohdatenformat und TIFF. Bei den Hybridverfahren wie der Kodak Photo CD entstehen ImagePacs, beim Scannen hat man meist eine größere, freie Auswahl über das Speicherformat.

Für maximale Bildqualität in der Nachbearbeitung empfiehlt sich das unkomprimierte Rohdatenformat. Hier werden die unbearbeiteten Bildsensordaten unkomprimiert gespeichert. Dieses Format bedarf größerer Mengen Speicherplatz und wird insbesondere im professionellem Umfeld angewendet.

JPEG ist dagegen verlustbehaftet, kann aber je nach Kompressionsgrad sehr speicherökonomisch, unter günstigen Umständen aber auch sehr nah am Original sein. JPEG2000 beherrscht mittlerweile die verlustlose Komprimierung und einen größeren Farbraum, wird aus Lizenzgründen aber kaum unterstützt. Der Fotograf muss also bereits vor dem Fotografieren eine Entscheidung über den Kompressionsgrad und damit über den möglichen Detailreichtum etcetera fällen. Eine vergleichbare Vorabentscheidung trifft der analog Fotografierende mit der Auswahl des Filmmaterials und der Filmempfindlichkeit, und muss das Filmmaterial wechseln um beispielsweise eine andere Lichtempfindlichkeit oder Filmkörnigkeit zu erreichen.

Es gibt nach wie vor viele proprietäre Dateiformate, die nicht mehr ohne weiteres gelesen werden können, wenn die entsprechende Software nicht mehr verfügbar ist. Daher sollte insbesondere bei den Rohdatenformaten bedacht werden, dass diese nach einigen Jahren unter Umständen konvertiert werden müssen. Eine Möglichkeit diese Probleme zu veringern, besteht in der Umwandlung in ein offenes oder verbreitetes Dateiformat, wie beispielsweise Portable Network Graphics (PNG) oder Digital Negative (DNG).

Meta-Informationen


Zu den Vorteilen der digitalen Bildspeicherung gehört die Möglichkeit, umfangreiche Meta-Informationen in der Datei zu speichern; diese Zusatzfunktion ist im Exchangeable Image File Format (Exif) standardisiert, das es jedoch inzwischen in mehreren Varianten gibt.

Bereits das Hybridsystem APS verfügte über noch vergleichsweise eingeschränkte Möglichkeiten der Speicherung von Meta-Informationen, und auch bei Kleinbildkameras ist das Einbelichten von Zeit- und Datumsangaben sowie der Bildnummer auf den Filmstreifen möglich, wenn die Kamera über eine entsprechende Funktion verfügt. Die analogen Kleinbild-Spiegelreflexkameras Minolta Dynax 9xi und Minolta Dynax 9 verfügen über eine Möglichkeit, zahlreiche Aufnahmeparameter zu speichern und in eine Textdatei ausgeben zu können; allerdings ist der Grad der Integration sowie insbesondere die Zuordnung des jeweiligen Datensatzes zu einem bestimmten Bild eines bestimmten Filmes nicht unproblematisch.

Bei den in die digitale Bilddatei eingebetteten Exif-Daten ist zu beachten, dass einige unzureichende Programme diese Daten bei einer Bildbearbeitung nicht erhalten; dies betrifft z.B. ältere Versionen der Bildbearbeitungssoftware Adobe Photoshop. Natürlich muss man für korrekte Exif-Daten auch daran denken, bei einem Wechsel der Zeitzone die kamerainterne Uhr umzustellen, sonst erhält man unbrauchbare Zeit- und ggf. auch Datumsangaben.


Digitale Aufnahmetechnik


Kameras und Kamerasysteme

Analoge Kameras und Kamerasysteme wurden über Jahrzehnte entwickelt, gepflegt und optimiert; bevor ihre Weiterentwicklung bei den marktführenden Herstellern in den letzten Jahren eingestellt wurde.

Die Bedienung der meisten analogen Kleinbildkameras war ähnlich - wobei Autofokus, Intervallometer, Belichtungsmessung etc. je nach Hersteller deutlich varierte. Die Benutzung von Tasten und Menüsystemen bei Digitalkameras kann deutlich umfassender und komplexer sein und erfordert weiteres Knowhow über das photochemische hinaus - da viele digitale Kameras zahlreiche Funktionen mehr bieten als ihre mechanischen Vorgänger. Bei der Digitalfotografie ist damit zu rechnen, dass der Fotograf bei jedem Systemwechsel neue Dinge erlernen kann, während die Grundlagen stets gleichbleiben - wie Blende, Brennweite, Verschlusszeit etc.

Ähnliches gilt für die System- und Modellpflege; während die klassischen höherpreisigen Kamerasysteme der großen Kamerahersteller, z.B. Nikon, Canon, Pentax über Jahrzehnte unter Beibehaltung einer herstellerspezifischen Kompatibilität gepflegt wurden, gibt es vergleichbares bei digitalen Spiegelreflexkameras. Aufgrund der Modellwechsel bei Digitalkameras ist bei billigen Geräten Zubehör für eine Kamerageneration oder noch für einige Nachfolgemodelle benutzbar.

Einige Hersteller von Digitalkameras wie Hasselblad führten zusammen mit ihren digitalen Kameras auch vollkommen neue Systeme ein, welche wiederum als System ausgerichtet sind.

[b]Digitale Kamerarückwände[b/]

Digitale Bilder können nicht nur mit nativen Digitalkameras oder durch Digitalisieren analoger Vorlagen, sondern auch mit einer digitalen Kamerarückwand angefertigt werden.

Scan Backs funktionieren nach dem Prinzip eines Flachbettscanners; es wird dabei zwischen Single-shot- und Multi-Shot-Verfahren unterschieden.

Objektive


Da heutige Digitalkameras meist Sensoren mit einer gegenüber den klassischen Filmformaten geringeren Fläche aufweisen, verändert sich effektiv die Wirkung der Brennweite des Objektivs. Gegenüber dem Kleinbildfilm ändert sich die Brennweite nicht wirklich, aber der Abbildungsmaßstab des Bildes ändert sich in dem Verhältnis, in dem er sich bei analogen Kameras ändern würde, wenn die Brennweite um den entsprechenden Faktor geändert würde. Dies bedeutet, dass die Brennweite eines Normalobjektivs bei einer Digitalkamera den Effekt eines leichten Teleobjektivs hervorruft. Dies freut zwar den Naturfotografen, führt jedoch zu Problemen für Freunde des Weitwinkelobjektivs: Es ist sehr aufwendig, verzerrungsarme Superweitwinkelobjektive für Digitalkameras zu konstruieren. Dementsprechend teuer sind diese Objektive. Auch verändert sich der Bereich der Schärfentiefe bei gleicher tatsächlicher Brennweite im Vergleich zu analogen Modellen.

Der Formatfaktor der Kamera wird entweder im Datenblatt der Kamera oder des Objektivs angegeben, oder die "effektive" Brennweite wird analog zu Kleinbild angegeben. Besitzer von digitalen Spiegelreflexkameras müssen die "effektive" Brennweite ihrer Wechselobjektive dagegen selbst berechnen, da dieser nicht auf den Objektiven selbst angegeben ist, denn diese Objektive können meist auch auf herkömmlichen Kleinbild-Spiegelreflexkameras eingesetzt werden. Der Formatfaktor liegt hier in der Regel zwischen 1,5 und 2.


Digitale Aufnahmepraxis


Die digitale Aufnahmepraxis weist gegenüber der konventionellen Fotografie einige Besonderheiten auf.

Bildgestaltung


Als Beispiel sei hier die Veränderung der Schärfentiefe erwähnt, die sich aus dem Formatfaktor ergibt (oft fälschlich Brennweitenverlängerung genannt: Die Brennweite eines Objektivs ändert sich jedoch nicht, nur dessen genutzter Bildwinkel durch das veränderte Aufnahmeformat); Objektive, die in der Kleinbildfotografie als Weitwinkel gelten, treten bei den meisten Digitalkameras als Normalobjektiv auf. Da sich die optischen Gesetzmäßigkeiten nicht verändern, nimmt die effektive Schärfentiefe (genauer: der Schärfebereich) des Bildes zu. Mit Digitalkameras ist es daher schwerer als in der Kleinbildfotografie, einen in Unschärfe zerfließenden Bildhintergrund zu erzielen, wie er beispielsweise in der Porträt- und Aktfotografie zur Hervorhebung häufig erwünscht ist. Einige moderne Spiegelreflex-Digitalkameras verfügen bereits über einen vollformatigen Sensor (24x36mm). Diese Kameras verhalten sich genauso wie analoge Kleinbild-Spiegelreflexkameras.

Spezialfunktionen

Viele Digitalkameras bieten dreh- oder schwenkbare Displays, mit denen einige Aufnahmetechniken komfortabler als mit herkömmlichen Kameras machbar sind. Hierzu gehören beispielsweise Aufnahmestandpunkte in Bodennähe, wie sie häufig in der Makrofotografie benötigt werden oder Aufnahmen "über Kopf", um über eine Menschenmenge hinweg zu fotografieren.

Aktuelle Digitalkameras (Stand: 2004) bieten fast ausnahmslos die Möglichkeit der Aufzeichnung kurzer Videoclips von etwa einer Minute im Format QQVGA oder QVGA, teilweise auch mit Ton. Tendenziell ist eine Entwicklung der digitalen Fototechnik zu beobachten, immer weiter mit der Videotechnik zu konvergieren; in Spitzenmodellen ist die Länge der Videoclips nur noch durch die Kapazität des Speichermediums begrenzt; die Bildauflösung liegt dabei im Bereich der Qualität von VHS oder bereits deutlich darüber (VGA, 640 x 480 bzw. PAL, 720 x 576).

Elektronische Bildbearbeitung

Neben der automatisch durch die Kamera durchgeführte Bildverarbeitung eröffnet die Digitalfotografie zahlreiche Möglichkeiten der Bildmanipulation und -optimierung durch die elektronische Bildbearbeitung, die über konventionelle Bildretusche und Ausschnittsvergrößerung weit hinausgehen.

Beispielsweise können aus einer Folge von Einzelbildern komfortabel Panoramafotos montiert, Bildhintergründe ausgetauscht oder Personen aus Bildern entfernt oder hineinkopiert werden.

Speicherung und Archivierung

Als Vorteile gegenüber der chemischen Fotografie wird häufig die entfallende Filmentwicklung sowie die scheinbar einfache, günstige und platzsparende Archivierbarkeit angeführt. All dies erfordert jedoch entsprechende technische Mittel (Computer, Software, CD- oder DVD-Recorder etc.), technische Fähigkeiten und letztlich doch enormen Platz ...und viel Zeit vor dem Computer.

Tatsächlich ist, anders als bei Film, die verlustfreie Langzeitarchivierung digitaler Bilder theoretisch perfekt möglich.

Der Hauptvorteil digitaler Daten ist hierbei, das anders als bei photochemischen Film exakt identische Kopien erzeugt werden können und auf die verschiedensten Speicherorte und Medien verbracht werden können - anders als bei Film, wo es nur ein Original geben kann und alle Kopien verändert und schlechter werden, können digitale Originale, Fehlerfreiheit und Lesbarkeit vorausgesetzt, beliebig oft verlustfrei vervielfältigt werden.

Auch kann eine Kopie des digitalen Archivs in Masterqualität weltweit abrufbar sein, beispielsweise durch eine identische Kopie auf einem Webserver, während Filmarchvmaterialien durch Handhabung und insbesondere unsachgemäße Benutzung leicht verschleissen. Deswegen werden grade in der kommerziellen Nutzung auch heute chemische Filme digitalisiert, um diese Vorzüge etwa im Verlagswesen und der Photoverwertung einzusetzen.

Ein weitere Vorteil digitaler Daten liegt im scheinbar geringem Platzbedarf - gerade große professionelle Archive mit mehreren Millionen Photos können jetzt relativ kompakt archiviert werden. Auch die Indexierung erscheint erleichtert.

Die Langzeitarchivierung digitaler Daten erfordert jedoch einen mit der Zeit steigenden Aufwand um die Datenträgersicherheit, die Fehlerfreiheit sowie die Lesbarkeit der Daten sicherzustellen. Ein zum Teil ungelöstes logistisches, finanzielles und technisches Problem.

In der analogen Fotografie weisen unter vergleichbar günstigsten Bedingungen gelagerte Kodachrome-Dias auch nach 80 Jahren nur geringe Alterungserscheinungen auf; jedoch belichten wenige Nutzer auf Dia aus, um digitale Aufnahmmen zu archivieren.

In der Digitalfotografie wird ein erheblicher Umkopier- und Konvertierungsaufwand betrieben werden müssen, um eine vergleichbare Langzeitarchivierbarkeit und Stabilität zu erreichen.

Speichermedien zum Fotografieren







Drei Ansichten einer CompactFlash-I-Karte

Als Speichermedien werden in der Digitalfotografie hauptsächlich Speicherkarten verwendet. Folgende sind hier gebräuchlich:

  • Memory Stick (MS)
  • Compact-Flash (CF) Karten,
  • Smart Media Karten (SM),
  • Secure Digital Memory Card (SD),
  • Microdrive (MD),
  • PC Card (PCMCIA/ATA),
  • xD-Picture Card (xD).


In der Anfangszeit der Digitalfotogafie wurden auch Disketten und spezielle CD-RW-Medien verwendet.

Compact-Flash-Karten bieten derzeit das beste Preis-Leistungsverhältnis, sind recht robust, gleichzeitig aber auch das sperrigste noch verbreitete Speichermedium, nachdem die PC Card kaum noch in Digitalkameras genutzt wird.

Diese Speichermedien sind im Gegensatz zum fotografischen Film wiederbeschreibbar. Auf einer Speicherkarte von 1 GByte Kapazität lassen sich etwa 100 bis 150 Fotos speichern, die analogen Kleinbildfotos qualitativ ebenbürtig oder überlegen sind (Digitale Spiegelreflexkamera, 8 Megapixel, Rohdatenformat). Für größere Mengen an Fotos (Bildberichterstattung und Reisefotografie) bieten sich preisgünstige und vergleichsweise leicht transportable „Image Tanks“ (2006: ca. 200,- EUR für 80 GByte, also etwa 8000 bis 12000 Fotos, ca. 220 bis ca. 330 Filme) an, die bereits in der einmaligen Benutzung günstiger als Filmmaterial sind, jedoch nahezu unbegrenzt wiederverwendet werden können. Eine weitere Möglichkeit für den Bildberichterstatter ist es, unterwegs ein (meistens ohnehin mitgeführtes) Notebook zu verwenden, mit dem alle Vorteile der digitalen Fotografie ausgespielt werden können: Fotos können ohne Verzögerung sofort begutachtet, sortiert, nachbearbeitet und direkt per Mobiltelefon oder WLAN in die Heimat versandt werden.

Ein Sonderfall der Digitalfotografie unter extremen klimatischen Bedingungen, wie beispielsweise Einsatz im Weltall, Wüste oder Arktis. Anders als Film, der bei hohen Temperaturen seine Eigenschaften ändert, hat die digitale Fotografie hier mit dementsprechend entworfenen Geräten diesen Bereich mit als erstes erobert, da Kosten eine geringere Rolle spielten. Beispiele für extremste Einsatzgebiete sind beispielsweise Raumsonden oder Messbojen. Weiterhin benötigen digitale Kameras kein Filmmaterial, welches grade bei Langzeit-einsätzen durch seinen Platzbedarf Filmkameras Grenzen setzte, während digitale Kameras ihre Bilder drahtlos übertragen können. Wegen der geringeren Ansprüche an die Stromversorgung der vollmechanischen, filmbasierten Spiegelreflexkameras gegenüber digitalen Kameras benötigen diese jedoch eine weitere Funktionsgruppe zur Stromerzeugung.

Speichermedien zum Archivieren


Ein zuverlässiges Langzeitspeichermedium für digitale Daten existiert bisher nicht. Die Problematik wird als digitales Vergessen bezeichnet und zunehmend nicht nur von Fachleuten, etwa von hauptamtlichen Bibliothekaren und Archivaren, sondern auch von Fotoamateuren erörtert.

Selbstgebrannte CDs oder DVDs können selbst bei guter Lagerung bereits nach wenigen Jahren unlesbar werden, von Billigfabrikaten gibt es auch Berichte, dass schon nach einigen Wochen erste Lesefehler auftraten. Lagerungsfehler wie übergroße Hitze (Hutablage Auto), Produktionsfehler etwa in der Qualitätssicherung, unerkannte Brennfehler und Schäden durch die laufende Benutzung (Kratzer) können diese Frist zudem weiter abkürzen.

Problematisch sind auch alle rein magnetisch aufzeichnenden Medien wie Disketten, die insbesondere in der Frühzeit der Digitalfotografie noch häufig als Speichermedium eingesetzt wurden. Besonders riskant erscheint die Archivierung in proprietären Speichermedien wie Zip- oder Jaz-Disks, die nur von einem oder von wenigen Herstellern für einen begrenzten Zeitraum hergestellt werden; entsprechend archivierte Daten können nur so lange genutzt werden, wie das benötigte Lesegerät funktionsfähig bleibt. Auch Festplatten oder Wechselfestplatten sind hier, auf lange Zeit gerechnet, nicht als Sicher zu betrachten. Insbesondere besteht hier ein sehr hohes Risiko für mechanische Beschädigungen.

Als sehr zuverlässig gelten MO-Disketten, für die die Hersteller mindestens zehn, teilweise 30 Jahre die Haltbarkeit garantieren. Entsprechende Laufwerke sind wegen der relativ hohen Kosten jedoch wenig verbreitet. Die MO-Medien sind durch die Verwendung einer Cartridge auch mechanisch sehr gut geschützt. Ebenfalls empfehlenswert sind DVD-RAM-Medien, denen eine deutlich bessere Haltbarkeit als CD-R, CD-RW oder DVD-R/RW nachgesagt wird. Auch DVD-RAM gibt es, ähnlich wie MO, als Cartridge, jedoch sind passende Laufwerke schwierig zu beschaffen.

Bilddatenbanken

Während in der konventionellen Fotografie die Übersicht über die einzelnen Bilder eines Filmes sehr rasch durch einen Kontaktabzug, Index-Print oder auf einem Leuchttisch möglich ist, werden in der Digitalfotografie spezielle Programme zum Auffinden von archivierten Bilddateien benötigt. Die so genannten Bilddatenbanken erzeugen ein Thumbnail des Bildes und bieten Felder zur Beschreibung des Bildes und der Aufnahmesituation; ein gewisser Komfort ergibt sich durch die Metadaten, die durch das EXIF-Format automatisch aufgezeichnet werden (Datum, Uhrzeit, Brennweite, Blende etc.). Für ambitionierte Fotografen oder Berufsfotografen sind Online-Fotoagenturen geeignete Plattformen, um ihre Fotos zu speichern und von dort direkt an die Käufer (Zeitungen, Verlage, Redaktionen etc.) zu vertreiben. Entsprechend große Server und Speicherplätze sind jedoch Voraussetzung. Darüber hinaus ist eine gute „Verschlagwortung“ mit passenden Schlüsselworten wichtig, um diese Datenbanken entsprechend nutzen zu können. Zur Verschlagwortung werden die im Bild gespeicherten IPTC-Felder genutzt.


Präsentation

Digitale Bilder können ebenso präsentiert werden wie konventionelle Fotografien; für nahezu alle Präsentationsformen existieren mehr oder minder sinnvolle Äquivalente. Die Diaprojektion vor kleinem Publikum wird beispielsweise ersetzt durch die Projektion mit einem Videoprojektor (Video-Beamer); das Fotoalbum durch die Web-Galerie; das gerahmte Foto durch ein spezielles batteriebetriebenes Display usw.

Wird eine erneute Bildwandlung (D/A-Wandlung) in Kauf genommen, können digitale Bilder ausgedruckt oder ausbelichtet werden und anschließend genauso wie konventionelle Papierabzüge genutzt werden; sogar die Ausbelichtung auf Diafilm ist möglich.

Allerdings erfordern alle derzeitigen digitalen Präsentationsformen ausreichende Technikkenntnisse sowie recht kostspielige Technik; der billigste Video-Beamer kostet derzeit noch immer etwa das Fünffache eines guten Diaprojektors. Als weiteres neues Problem stellt sich das der Kalibrierung des Ausgabegeräts, was bei den meisten Monitoren, jedoch nur bei wenigen Flüssigkristallbildschirmen (LCDs) möglich ist und insbesondere bei Beamern einen erheblichen Aufwand verursachen kann.


Fotowirtschaft


Durch die enge Verwandtschaft der Digitalfotografie einerseits mit der Videotechnik und andererseits mit der Informations- und Kommunikationstechnik erschienen ab den 80er Jahren eine Reihe von neuen Akteuren wie Sony und Hewlett Packard auf dem Fotomarkt, die ihr Know-how aus dem Bereich der Video- und Computertechnik gewinnbringend einsetzen konnten. Traditionelle Fotoanbieter wie Leica gingen Kooperationen mit Elektronikunternehmen wie Panasonic ein, um kostspielige Eigenentwicklungen zu vermeiden.

Der Digitalfotografie kommt in der Fotowirtschaft eine wachsende Bedeutung zu. So wurden nach Branchenschätzungen bereits 1999 neben 83 Milliarden analogen Fotografien schon 10 Milliarden Digitalbilder hergestellt.

Nach Angaben des Marktforschungsunternehmens Lyra Research wurden 1996 weltweit insgesamt 990.000 Digitalkameras abgesetzt. In Deutschland wurden im Jahr 2003 erstmals mehr Digitalkameras als analoge Kameras verkauft; nach Aussagen des Einzelhandels wurden 2004 bereits teilweise doppelt so viele digitale Geräte wie analoge Kameras abgesetzt.

Die bisher preiswerteste Digitalkamera wurde im Juli 2003 mit der Ritz Dakota Digital vorgestellt; dabei handelt es sich um ein Modell mit einer Auflösung von 1,2 Megapixeln (1280x960 Pixel) und CMOS-Sensor, die in den USA zu einem Preis von 11 USD angeboten wird.

Neben der Ausbreitung der Digitalfotografie in den Massenmarkt gibt es einen Trend zum Zurückdrängen der analogen Fotografie. Seit etwa 2004 ist beispielsweise eine großflächige Verdrängung fotochemischer Produkte aus dem Angebot von Fotohändlern und Elektronikmärkten zu beobachten: So ging das Produktsortiment an fotografischen Filmen deutlich gegenüber dem Vorjahr zurück. Die Entwicklung neuer Materialien für die Fotografie auf Silberfilm bleibt dennoch nicht stehen, so sind 2006 beispielsweise verbesserte Filme von Fuji auf den Markt gekommen, während Kodak die Marktchancen für einen speziellen Schwarz-Weiss-Film mit einer Empfindlichkeit von ISO 24.000 prüft.

Kodak kündigte im Januar 2004 die Einstellung des Verkaufs von Filmkameras in den Märkten der Industrienationen an. Auch Nikon hat die Entwicklung und den Vertrieb analoger Kameras (abgesehen vom Profimodell Nikon-F-Serie|F6) bereits eingestellt. Minolta hat im Frühjahr 2006 angekündigt, aus dem Kamera- und Filmgeschäft auszusteigen. Aus einer Kooperation mit Sony folgt nun, dass Sony die Produktion digitaler Spiegelreflexkameras beabsichtigt, die mit Minolta-Objektiven nutzbar sind.


2004 wurden fast 7 Millionen Digitalkameras verkauft. Für das Jahr 2005 rechnet der Fotoindustrieverband mit 8 Millionen verkauften Digitalkameras.

Außerdem ist eine zunehmende Medienkonvergenz von Fotografie und Computertechnik festzustellen.


Vergleich mit analoger Fotografie


Vorteile

  • Bei digitalen Kompaktkameras kann man mit dem LCD-Bildschirm den Bildausschnitt gut kontrollieren. Hier entspricht die Funktion insofern derjenigen einer Spiegelreflexkamera, als sie das Problem der Parallaxe umgeht, d. h. man sieht bei den meisten Kameramodellen recht genau den Bildausschnitt, der auch fotografisch festgehalten wird. Schwenk- und Drehmonitore vereinfachen die Kontrolle ausgefallener Aufnahmeperspektiven zum Beispiel aus der Froschperspektive oder über Kopf. Allerdings sind die Vorschaubildschirme in heller Umgebung meist schlecht ablesbar, das Arbeiten mit dem Sucher ist in solchen Fällen vorzuziehen.

  • Man kann das Foto gleich nach der Aufnahme zumindest auf grobe Fehler hin kontrollieren und gegebenenfalls noch eine weitere Aufnahme machen. Eine misslungene Aufnahme kann noch in der Kamera gelöscht werden.

  • Wegen der gegenüber Spiegelreflexkameras vergleichsweise schlechten Monitorauflösung kann bei vielen elektronischen Suchern und Monitoren das Bild vor oder nach der Aufnahme vergrößert werden (Softwarelupe), um die Bildschärfe, zum Beispiel bei manueller Fokussierung, besser beurteilen zu können.

  • Der Weg zur Web- oder Printpublikation von Aufnahmen ist kürzer bzw. schneller, weil das Einscannen von Dias oder Papierbildern entfällt. Das elektronische Versenden auch von Einzelnbildern an Verlage und Auftraggeber ist möglich. Ist keine anderweitige Verwendung der Aufnahme geplant, kann man eine verhältnismäßig niedrige Bildauflösung einstellen und die Aufnahme ohne weitere Nachbearbeitung direkt verwenden. Zugang zu elektronischen Medien vorausgesetzt, sind Austausch und Verbreitung von Fotos schnell und einfach möglich.

  • Ein Filmwechsel für unterschiedliche Lichtverhältnisse ist nicht mehr notwendig. Digitalkameras lassen sich einfach an die vorhandene Lichtmenge anpassen; ähnlich wie bei der Fotografie auf Film nimmt die Bildqualität bei erhöhter Empfindlichkeit ab.

  • Ein großer Vorteil der Digitalfotografie ist die Möglichkeit, über den Weißabgleich die Farbtemperatur anzugleichen. Dieser kann manuell oder automatisch vorgenommen werden. Nur wenige, sehr einfache Kameras bieten allerdings keine manuelle Steuerung. Dadurch können Bilder, wie in der Analogtechnik, sowohl bei Tageslicht als auch bei Kunstlicht farbneutral dargestellt werden. In der herkömmlichen Fotografie sind dafür geeignete Farbfilter oder entsprechendes Filmmaterial nötig.

  • Den Besitz eines Computers und entsprechender Bildbearbeitungs- und -archivierungssoftware vorausgesetzt, kann man digitale Fotos nachbearbeiten und indexieren. Durch die weite Verbreitung von EDV in Haushalten und Firmen ist der Zugang zu früher eher schwer zugänglichen Dunkelkammermethoden durch die simulierende Bildbearbeitung gut möglich.

  • Es treten jenseits von Verschleiß, Zeit, verpasster Gelegenheit und Stromverbrauch keine Kosten für missglückte Bilder auf. Für Anfänger besteht die Möglichkeit, kostengünstig zu üben. Durch direkte Rückkoppelung besteht eine in vielen Aspekten relativ steile Lernkurve. Photographische Experimente werden erleichtert bzw. ermöglichst.

  • Mit Digitalkameras ist in der Regel ein längeres, ununterbrochenes Fotografieren möglich, da es nicht wie in der analogen Fotografie nach meist höchstens 36 Bildern nötig ist, den Film zu wechseln. Bei Digitalkameras können – abhängig vom verwendeten Speicher und dem Bildformat – meist mehrere hundert Bilder in Folge aufgenommen werden, bevor eine Unterbrechung zum Wechseln des Speichermediums oder der Batterien nötig ist. Dies macht sich beispielsweise bei der Unterwasserfotografie bemerkbar, wo man bei der analogen Fotografie pro Tauchgang nur maximal 36 Bilder schießen konnte, da man zum Filmwechsel auftauchen müsste.

  • Da die meisten Digitalkameras im Vergleich zum Kleinbildformat kleinere Sensoren verwenden, bieten sie eine wesentlich höhere Schärfentiefe, was Schnappschüsse und Makrofotografie vereinfacht. Durch die kleinere Sensorgröße ist es einfacher, hochwertige und doch kostengünstige lichtstarke Objektive zu bauen.

  • Durch die Motivsuche über den Bildsensor werden auch bei einfachen Kameras Makroaufnahmen ermöglicht, da es keine Parallaxe zwischen Sucher und Objektiv gibt. Aus demselben Grund sind große Zoomfaktoren möglich, da es keine Probleme mit der Übereinstimmung zwischen Sucherbild und Aufnahme gibt.

  • Bildstabilisatoren können auch über die Bewegung des Bildsensors realisiert werden, bei entsprechend ausgestatteten Kameras sind keine speziellen Wechselobjektive erforderlich.

  • Digitale Kameras bieten häufig die Möglichkeit, einfache Video- und Tonaufnahmen zu machen und wiederzugeben.

  • Die meisten digitalen Kameras können direkt an analoge Wiedergabegeräte, wie zum Beispiel Fernseher oder Videoprojektoren, oder aber auch an PictBridge-kompatible Fotodrucker angeschlossen werden.

  • Digitale Spiegelreflexkameras mit entsprechend hochwertiger Optik übertreffen herkömmliche Kleinbildkameras inzwischen, je nach Wertung, in der Abbildungsqualität. Auch können heutige DSLRs bis zu 10 Bilder pro Sekunde bei maximaler Qualität abspeichern. Bei Nutzung des RAW-Formats sind auch nach der Aufnahme weitgehende Bíldmanipulationen möglich.


Nachteile

  • Der im Vergleich zu herkömmlichen Kameras hohe Stromverbrauch kann bei Kameras mit zu kleiner Akkukapazität bzw. zu schwachem Akku ein Problem sein. Neuere Modelle ermöglichen dabei rechnerisch einige hundert Bilder mit einer Akku-Ladung. Wiederaufladbare Akkus haben im Vergleich zu den früher verwendeten, zum Teil speziellen und damit teure Batterien Vorteile. Die Abhängigkeit vom mitgeführten Stromlieferanten bleibt insbesondere bei schwierigen Wetterbedingungen (Kälte, Luftfeuchtigkeit, etc.) oder an abgelegenen Orten ein Problem. Auch ist die Lieferbarkeit von Ersatzteil-Akkus innerhalb der gesamten Kameralebenszeit nicht garantiert.

  • Durch die kleinere Größe des Sensors im Vergleich zum Film ist selbst bei weit geöffneter Blende keine geringere Schärfentiefe erreichbar, weil auch die Brennweite der Objektive kleiner wird. Das kann zum Beispiel bei Porträtfotos störend sein und schränkt typische fotografische Gestaltungsmöglichkeiten stark ein. Abhilfe schaffen digitale Spiegelreflexkameras, welche, bei höheren Kosten, deutlich größere Sensoren besitzen. Seit 2005 gibt es auch digitale Kompaktkameras mit großen Sensoren. Der Effekt kann zum Teil auch mit Bildbearbeitungsprogrammen nachgeahmt werden.

  • Der Bildsensor ist wärmeempfindlich, das heißt, er produziert bei höheren Temperaturen ein höheres Bildrauschen. Kompaktkameras, bei denen der Sensor auch zur Bildvorschau eingeschaltet bleiben muss, neigen bei längerer Betriebsdauer zu erhöhtem Rauschen. Bei digitalen Spiegelreflexkameras ist die Zunahme des Rauschens durch Eigenerwärmung vernachlässigbar, da der Bildwandler nicht zur Motivsuche verwendet werden kann oder sich wegen der geringen Leistungsaufnahme nicht maßgeblich erwärmt.

  • Bildsensoren können durch längerdauernde intensive Lichteinwirkung beschädigt werden.<ref>How to burn a Nikon coolpix 990 sensor</ref> Fertigungsfehler, die Lebenszeit oder Nutzbarkeit beinträchtigend, sind möglich.

  • Kontrastumfang und Farbtiefe sind insbesondere bei sehr kleinen Sensoren meist geringer als bei herkömmlichem Film. Hochwertige DSLR können die Qualität herkömmlichen Films je nach Aufnahmesituation erreichen und, je nach Kamera, im Einzelfall auch übertreffen.

  • Schlechtere Bildauflösung bei Schwarzweiß-Aufnahmen gegenüber vergleichbar guten Filmen und Objektiven. Bei der Verwendung von Bayer-Sensoren und optischen Tiefpässen ist die Farbauflösung verhältnismäßig gering (Ausnahme Foveon-X3). Direkte höherauflösende Schwarz-Weiß-Technik ist, entgegen dem relativ einfach zu sehendem Filmtausch in der Analogtechnik bei der weit verbreiteten Farb-Sensortechnik nur durch Umrechnung der Bilddaten möglich.

  • Bei digitalen Kompaktkameras ist eine teilweise deutliche Auslöseverzögerung festzustellen, die vornehmlich dadurch verursacht wird, dass der Bildsensor auch für den Autofokus ausgewertet wird. Damit sind Aufnahmen von Bewegungsphasen oder ruhige, spontane Schnappschüsse erschwert.

  • Wegen relativ kurzer Produktzyklen hoher Wertverlust der Hardware. Im Vergleich zur analogen Filmtechnik auch relativ schneller Wegfall von Verbrauchsmaterialien und Ersatzteilen. Kaum lokale Reparaturmöglichkeiten.

  • Umstrittene "Haltbarkeit" digitaler Informationen (Dauerhaftigkeit und langfristige Verfügbarkeit von Speichermedien, Datenformaten, Laufwerken, Hard- und Software). Gerade bei Aufnahmen in proprietären Speicherformaten (sogenannte Rohdaten (RAW) mit der ursprünglichen Bildinformation) ist eine zukünftige Verwendbarkeit dieser Rohdaten derzeit nicht sicher abschätzbar. Ein offener Standard für RAW-Daten existiert zwar (DNG bzw. OpenRAW), wird aber bislang (2007) erst von wenigen Herstellern, Kameramodellen und Bildbearbeitungsprogrammen unterstützt.

  • Kompakte Digitalkameras verzichten zugunsten eines möglichst großen Displays zunehmend auf einen optischen Sucher. Dies kann die Bildgestaltung bei sehr hellen Lichtverhältnissen sehr erschweren. Vorhandene optische Sucher sind zum Teil schlechter Qualität.

  • Aufnahmen bei Schwachlicht und in der Nacht sind durch die oft vorgesetzte elektronische Steuerung, Bildrauschen und Akkukapazitätsproblemen erschwert.

  • Die Robustheit und Haltbarkeit einfacher analoger Technik kann, bedingt durch den technischen Aufwand digitaler Technik, nicht erreicht werden.

  • Eine direkte bastlerische Annäherungen an die oder Experimente innerhalb der Phototechnik sind aufwendiger oder schlicht unmöglich.

  • Die Einstiegskosten sind, wie die Kosten für höherwertiges Material, in der digitalen Photographie im Vergleich zur analogen Phototechnik vergleichsweise hoch.


[bearbeiten] Literatur

* Ralph Altmann: Insiderbuch Digitale Fotografie 2. Midas 2003. ISBN 3907020642
* Tom Ang: Digitale Fotografie und Bildbearbeitung. Dorling Kindersley 2002. ISBN 3831003882
* Andreas Kunert. Farbmanagement in der Digitalfotografie. Mitp-Verlag 2004. ISBN 3826614178
* Helmut Kraus und Romano Padeste: Digitale Highend-Fotografie. Dpunkt Verlag 2003. ISBN 3898642399
* Jost J. Marchesi: digital Photokollegium. 3 Bände, Verlag Photographie, 2003 ISBN 3933131715 ISBN 3933131723 ISBN 3933131731
* Christoph Prevezanos: Digitalfotografie-Praxisbuch (mit CD-ROM). Franzis 2003. ISBN 3772360173
* Andrea Trinkwalder: Raw-Masse. Höhere Farbtiefe, weniger Fehler: Bessere Bilder dank Rohdaten. In: c't 16/04, S. 152 (atr)
* Wolfgang Krautzer: Digitale Fotopraxis. Leitfaden für Profis und Einsteiger. Report Verlag 2004. ISBN 3901688420
* Josef Scheibel, Robert Scheibel: Fotos digital - Basiswissen aktuell (2. erweiterte Neuauflage). vfv Verlag 2007. ISBN 9783889551788
* Josef Scheibel, Robert Scheibel: Fotos digital - Aufnahmepraxis. vfv Verlag 2006. ISBN 3889551718
* Josef Scheibel, Robert Scheibel: Fotos digital - printen, präsentieren, archivieren. vfv Verlag 2004. ISBN 3889551513


Weitere Quellen




Weblinks
Allgemeines



Software



Analyse digitaler Fotografien
Beitrag Forum: Praktica-Forum   Geschrieben: Di, 06. Nov 2007 19:52   Titel: Praktica-Objektive Für Digitale Spiegelreflexkameras

Wer sich über die Jahre eine tolle Praktica-Sammlung angeschafft hat und nun trotz seines dadurch bewiesenen guten Geschmakes auf die digitale Fotografie wechseln möchte, muss für neue Systeme (Objektive, Blitzgerät u.a. Zubehör) tief in die Geldbörse greifen. Um nicht alle Objektive dadurch ein zweites mal zu erwerben sollte man sich lieber die Frage stellen:

Gibt es digitale Spiegelreflex Bodys die kompatibel zu Praktica Objektiven sind???

Für die M42 Objektive gibt es für fast alle Kamerasysteme Adapter. Bei Pentax braucht man einen Adapter, der nicht aufträgt (gibts Original von Pentax). Adapter kosten für alle Systeme circa 20 bis 30 Euro und werden meist von Fremdherstellern wie Hama oder Kood gefertigt.
Schwieriger wird es jedoch bei den Bajonett-Objektivern der Praktica B Serie. Der Grund dafür liegt darin, daß diese Objektive relativ wenig verbreitet waren. Bei Nikon verliert man die Unendlich-Einstellung. Grund: Der Abstand zum Sensor ("Auflagemaß") ist zu groß! Also sind die Objektive nur für Nahaufnahmen zu gebrauchen. Gleiches gilt für das Minolta-Bajonett (jetzt in Sony-DSLRS).
Es gilt bei der Verwendung von älteren, adaptierten Objektiven, daß zur Belichtungsmessung die Blende manuell geschlossen werden muss. Das ist aber bei den alten Objektiven zum Glück kinderleicht. Es kann vorkommen, daß man die Belichtung etwas nach unten oder oben korrigieren muss. Je nach verwendetem Objektiv an der Praktika (Zeiss, Pentacon)
könnte es u.U. noch Probleme mit dem Spiegelanschlag geben.


Bei Nutzung von adaptierten Objektiven ist zu beachten, daß sich die effektive Brennweite verlängert.

  • Pentax - mal 1,5
  • Canon APS-C - mal 1,6
  • Nikon DX - mal 1,5
  • Olympus - mal 2 (wie auch bei den Leica 4/3-Pendants)
  • Sony (Konica Minolta) - mal 1,5

Wenn man KB-DSLRs einsetzt wie die Canon 5D oder die 1Ds, gibt es natürlich keine scheinbare Brennweitenverlängerung. Jedoch beträgt bei den 1D-Modellen die Verlängerung noch 1,3fach.
Bei Nikon im FX Format (D3) wird es ebenfalls keine Brennweitenverlängerung geben , aber dennoch den Nachteil keines unendlichen Fokus.

Beste Grüße,

Hannes
Beitrag Forum: Makro und Stilleben   Geschrieben: Mo, 01. Oct 2007 21:50   Titel: Makrofotografie Allgemein

Makrofotografie

Um relativ kleine Objekte formatfüllend abzubilden reichen normale Objektive meistens nicht aus. Wenn man nicht gerade ein teures Objektiv mit Makrofunktion (welche meistens auch nicht befriedigend ist) kaufen möchte, kann man folgende Alternativen verwenden:

[list][*] Einen Zwischenring (d.h. Makroring) zwischen Objektiv und Kamera einfügen. Somit wird der durch geringen Objektabstand hervorgerufenen Brennpunktverlagerung durch Vergrößerung des Abstandes der Linse zur Filmebene entgegengewirkt.
[*] Eine Nahlinse vor das Objektiv schrauben. Dies bewirkt genauso eine Brennweitenverschiebung.

Zu beachten ist, daß eine optimale Blende gefunden wird. Zu weit geöffnete Blende verkürzt den Tiefenschärfebereich. Eine zu eng geschlossene Blende führt zu beugungsunschärfe. Zudem ist durch Verwendung von Makroringen oder Nahlinsen der Tiefenschärfebereich sowieso sehr eng... Eine Spiegelvorauslösung ist hier empfehlenswert.

Bei Makroaufnahmen sollte man für ausreichend Beleuchtung sorgen, da durch den kleinen Bildausschnitt nur sehr wenig Licht zur Verfügung steht.

Weiteres unter:

Artikel Makroobjektiv bei Fotowiki
 
Seite 1 von 2 Gehe zu Seite 1, 2  Weiter
Alle Zeiten sind UTC + 1 Stunde [Sommerzeit aktiviert]